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ABSTRACT 
This paper describes how to automatically cross-reference 
documents with Wikipedia: the largest knowledge base ever 
known. It explains how machine learning can be used to identify 
significant terms within unstructured text, and enrich it with links 
to the appropriate Wikipedia articles. The resulting link detector 
and disambiguator performs very well, with recall and precision 
of almost 75%. This performance is constant whether the system 
is evaluated on Wikipedia articles or “real world” documents. 
This work has implications far beyond enriching documents with 
explanatory links. It can provide structured knowledge about any 
unstructured fragment of text. Any task that is currently addressed 
with bags of words—indexing, clustering, retrieval, and 
summarization to name a few—could use the techniques 
described here to draw on a vast network of concepts and 
semantics.  

Categories and Subject Descriptors 
I.2.7 [Artificial Intelligence]: Natural Language Processing – text 
analysis. 

I.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – linguistic processing. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Wikipedia, Data Mining, Semantic Annotation, Word Sense 
Disambiguation.  

1. INTRODUCTION 
Wikipedia has seen a meteoric rise in scale and popularity over 
the last few years. It is now the largest, most visited encyclopedia 
in existence. It is also densely structured; its articles are peppered 
with hundreds of millions of links. These connections explain the 
topics being discussed, and provide an environment where 
serendipitous encounters with information are commonplace. 
Anyone who has browsed Wikipedia has likely experienced the 
feeling of being happily lost, browsing from one interesting topic 
to the next and encountering information that they would never 

have searched for. Wikipedia is a classic “small world,” so richly 
hyperlinked that it takes, on average, just 4.5 clicks to get from 
one article to any other (Dolan, 2008). 
The work described in this paper aims to bring the same 
explanatory links—and the accessibility and serendipity they 
provide—to all documents. It explains how the topics mentioned 
in unstructured text can be automatically recognized and linked to 
the appropriate Wikipedia articles to explain them. Figure 1 
illustrates this with a somewhat dated news story about Iranian 
prisoners of war left in Iraq after the first Gulf War, which has 
been automatically augmented using our techniques with links to 
pertinent topics such as the International Committee of the Red 
Cross and Baghdad. This process is known as wikification, and 
our approach differs from previous attempts in that we use 
Wikipedia not only as a source of information to point to, but also 
as training data for how best to create links. This gives large 
improvements in both recall and precision. 
Before describing the details of this new machine-learning 
approach to wikification, we first describe the related work to 
which it can be compared. This is followed by descriptions of the 
two separate stages involved: link disambiguation and link 
detection. Both of these steps are evaluated separately against 
manually defined ground-truth obtained from Wikipedia. This is 
followed by a third evaluation, in which news stories are wikified 
and then judged by human participants. The paper concludes with 
a discussion of implications, which go much beyond enriching 
documents with explanatory links. The techniques described here 
can provide structured knowledge about any unstructured 
fragment of text, and are therefore applicable to a wide variety of 
tasks.  

2. RELATED WORK  
Automatically augmenting text with links to web pages has been 
controversial in the past. When developing Windows XP, Microsoft 
released plans for the Smart-Tag service which was to automatically 
add links to web-pages within Windows Explorer. This was aborted 
when many expressed concern that pages were being 
“surreptitiously” modified for commercial purposes (Mossberg, 
2001). Google’s AutoLink feature has received similar criticism and 
has not been widely accepted. Consequently automatic linking is 
most successful when restricted to safe domains such as cinema 
(Drenner et al. 2006).  
Using Wikipedia as a destination for links sidesteps most of the 
concerns about automatic link generation, since the resource strives 
to be impartial and does not generate profits. To our knowledge, the 
only existing attempt to use Wikipedia in this way is the Wikify 
system developed by Mihalcea and Csomai (2007). This system 
works in two separates stages. The first, detection, involves 
identifying the terms and phrases from which links should be made. 
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Mihalcea and Csomai’s most accurate approach to this is based on 
link probabilities obtained from Wikipedia’s articles. Formally, the 
link probability of a phrase is defined as the number of Wikipedia 
articles that use it as an anchor, divided by the number of articles 
that mention it at all. Thus the detection approach is to gather all n-
grams for a document and retain those whose link probability 
exceeds a certain threshold. When tested on Wikipedia articles, the 
resulting anchor vocabularies matched the original markup with a 
precision of 53% and a recall of 56%. 
The next phase, disambiguation, ensures that the detected phrases 
link to the appropriate article. For most anchors, there are several 
destinations to choose from. The term plane, for example, usually 
links to an article about fixed wing aircraft. Sometimes, however, it 
points to a page describing a theoretical surface of infinite area and 
zero depth, or a tool for flattening wooden surfaces. To choose the 
most appropriate destination, Wikify’s best approach extracts 
features from the phrase and its surrounding words (the terms 
themselves and their parts of speech), and compares this to training 
examples obtained from the entire Wikipedia. When run over 
anchors obtained from Wikipedia articles, this is able to match the 
manually defined destinations with a precision of 93% and a recall 
of 83%. However, it requires enormous preprocessing effort, 
because the entire Wikipedia must be parsed.   
The problem of topic indexing is closely related to wikification. 
Here the aim is to identify the most significant topics; those which 
the document was written about (Maron, 1977). These index topics 
can be used to summarize the document and organize it under 
category-like headings. Wikipedia is a natural choice as a 
vocabulary for obtaining index topics, since it is broad enough to be 
applicable to most domains. To use Wikipedia in this way, one must 
go through much the same process as wikification: one must detect 
the significant terms being mentioned, and disambiguate these to the  

appropriate topics. The only difference is an additional stage where 
the most important topics are identified.  
Medelyan et al. (2008) make these similarities very clear in their 
approach to topic indexing with Wikipedia, and even reuse 
Wikify’s approach for detecting significant terms. They differ in 
how they disambiguate terms, however. They gain similar results 
much more cheaply by balancing (a) the commonness (or prior 
probability) of each sense and (b) how the sense relates to its 
surrounding context. This approach explained in Section 3.1, 
where we improve upon it by weighting context terms and using 
machine learning to balanced commonness and relatedness.  

3. LEARNING TO DISAMBIGUATE LINKS 
This section describes and evaluates a new approach to 
disambiguating terms that occur in plain text, so they can be 
linked to the appropriate Wikipedia article. It seems odd to cover 
this problem first when the techniques described previously tackle 
the task of detection—recognizing terms that should be linked—
before deciding where they should link to. This reflects one of the 
key differences of our approach: it uses disambiguation to inform 
detection, and thus this stage must be described first.   

3.1 A learning approach to disambiguation 
We have developed a machine-learning approach to 
disambiguation that uses the links found within Wikipedia articles 
for training. For every link, a Wikipedian has manually—and 
probably with some effort—selected the correct destination to 
represent the intended sense of the anchor. This provides millions 
of manually-defined ground truth examples to learn from.  
All the experiments described in this paper are based on a version 
of Wikipedia that was released on November 20, 2007. It contains 
just under two million articles. Because we wanted a reasonable 
number of links to use for both training and evaluation, we 
selected articles containing at least 50 links. We also avoided lists 

Figure 1: A news story that has been automatically augmented with links to relevant Wikipedia articles 
 



and disambiguation pages, because these are not representative 
unstructured text. A total of 700 articles were randomly selected 
and set aside for developing the disambiguation algorithm: 500 
for training; 100 for configuration, and a further 100 for final 
evaluation.  
The 500 training articles contain more than 50,000 links. Each 
link represents several training instances. The connection between 
an anchor term and its chosen destination gives a positive 
example, while the remaining possible destinations provide 
negative ones. Figure 2 demonstrates this with the anchor tree: 
there are 26 possible senses (18 more than are shown in table on 
the right). Only one sense is a positive example, and the 
remaining 25 are negative. In all, the 500 training articles provide 
about 1.8 million examples. 

Commonness and Relatedness 
Just like Medelyan et al’s (2008) algorithm, our basic approach is to 
balance the commonness (i.e. prior probability) of a sense with its 
relatedness to the surrounding context. The commonness of a sense 
is defined by the number of times it is used as a destination in 
Wikipedia: Figure 2 shows that 93% of tree anchors link to the 
woody plant, 3% to the type of graph, and 3% to the computer 
science concept. The algorithm is predisposed to select the first of 
these senses rather than the more obscure ones, which go all the way 
down to The Trees, a song by the British rock band Pulp.  
As figure 2 demonstrates, this is not always the best decision. Here 
tree clearly refers to one of the less common senses—the 
hierarchical data structure—because it is surrounded by computer 
science concepts. Our algorithm identifies these cases by comparing 
each possible sense with its surrounding context. This is a cyclic 
problem because these terms may also be ambiguous. Fortunately in 
a sufficiently long piece of text one generally finds terms that do not 
require any disambiguation at all, because they are only ever used to 
link to one Wikipedia article. There are four unambiguous links in 
the text of Figure 2, including algorithm, uninformed search and 
LIFO stack. We use every unambiguous link in the document as 
context to disambiguate ambiguous ones.  
Each candidate sense and context term is represented by a single 
Wikipedia article. Thus the problem is reduced to selecting the 

sense article that has most in common with all of the context 
articles. Comparison of articles is facilitated by the Wikipedia Link-
based Measure we developed in previous work (Milne and Witten, 
2008), which measures the semantic similarity of two Wikipedia 
pages by comparing their incoming and outgoing links. For the sake 
of efficiency the disambiguation algorithm (and the link detection 
system that follows) only considers the links made to each article. 
The algorithm must make a vast amount of comparisons, and this 
small sacrifice allows all of the information required to do so to be 
stored in memory. Formally, the relatedness measure is: 

 
where a and b are the two articles of interest, A and B are the sets of 
all articles that link to a and b respectively, and W is set of all 
articles in Wikipedia. The relatedness of a candidate sense is the 
weighted average of its relatedness to each context article, where the 
weight of each comparison is defined in the next section.   

Some context terms are better than others 
One of the main differences between our approach and Medelyan et 
al’s is that we do not consider all context terms to be equally useful. 
The word the, for example, is unambiguous in that it is only ever 
used to link to the grammatical concept of an article, but it has zero 
value for disambiguating other concepts. Mihalcea and Csomai’s 
link probability feature helps to identify such cases; there are 
millions of articles that mention the but do not use it as a link. 
Weighting context terms on this feature emphasizes those that are 
most likely a priori—ones that are almost always used as a link 
within the articles where they are found, and always link to the same 
destination.  
Secondly, many of the context terms will be outliers that do not 
relate to the central thread of the document. We can determine how 
closely a term relates to this central thread by calculating its average 
semantic relatedness to all other context terms, using the measure 
described previously. These two variables—link probability and 
relatedness—are averaged to provide a weight for each context 
term. This is then used when calculating the weighted average of a 
candidate sense to the context articles.  
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Figure 2: Disambiguating tree using surrounding unambiguous links as context.  

sense commonness relatedness
Tree 92.82% 15.97%
Tree (graph theory) 2.94% 59.91%

Tree (data structure) 2.57% 63.26%
Tree (set theory)  0.15% 34.04%
Phylogenetic tree 0.07% 20.33%
Christmas tree 0.07% 0.0%
Binary tree 0.04% 62.43%
Family tree 0.04% 16.31%
  … 



Combining the features 
We have already discussed the two main features used by the 
classifier: the commonness of each sense, and its relatedness to 
the surrounding context. Only the latter of these is different from 
those used by Medelyan et al. A more fundamental difference is 
the way in which we use machine learning to combine these 
features, so that the balance can be adjusted from document to 
document. The previous work instead used a fixed prior heuristic, 
determined in advance.  
To balance commonness and relatedness, we take into account 
how good the context is. If it is plentiful and homogenous, then 
relatedness becomes very telling. In Figure 2, for example, the 
most common sense of tree is entirely irrelevant because the 
document is clearly about computer science. However, if tree is 
found in a general document with ambiguous or confused context, 
then the most common sense should be chosen. By definition, this 
will be correct in most cases. Thus the final feature—context 
quality—is given by the sum of the weights that were previously 
assigned to each context term. This takes into account the number 
of terms involved, the extent they relate to each other, and how 
often they are used as Wikipedia links. 
The three features are used to train a classifier that can distinguish 
valid senses from irrelevant ones. It does not actually choose the 
best sense for each term. Instead it considers each sense 
independently, and produces a probability that it is valid. If strict 
disambiguation is required, then we simply choose the sense that 
has the highest probability. If more than one sense may be useful, 
then we gather all senses that have a higher probability of being 
valid than not. We evaluate these options in Section 3.3. 

3.2 Configuration and attribute selection 
Configuring the disambiguation classifier involves setting one 
parameter and identifying the most suitable classification 
algorithm. This parameter specifies the minimum probability of 
senses that are considered by the algorithm. As illustrated earlier 
with the tree example, terms often have extremely unlikely senses 
which can be safely ignored. The distribution follows the power 
law: the vast majority of links are made to just a few destinations 
and there is a long tail of extremely unlikely senses. Jackson, for 
example, has 230 senses, of which only 31 have more than 1% 
chance of occurring. If all these are considered they must each be 
compared to all the context terms. Much speed is gained by 
imposing a threshold below which all senses are discarded. This 
has the added advantage of increasing precision, since the 
discarded senses are unlikely to be relevant, but it decreases 
recall. Figure 3 plots this tradeoff, and identifies 2% as a sensible 
probability threshold that balances the two metrics.  
We experimented with several classification algorithms, and the 
results are shown in Table 1. As one would expect, Naïve Bayes 

has the worst performance. There are dependencies between the 
features that lead this scheme astray. Interestingly Quinlan’s 
(1993) C4.5 algorithm outperforms the more sophisticated 
Support Vector Machine, and so it is used in the remainder of the 
paper. Feature selection makes no difference, and bagging 
improves the classifier by only 0.3%.  

3.3 Evaluation 
To evaluate the disambiguation classifier, 11,000 anchors were 
gathered from 100 randomly selected articles and disambiguated 
automatically. Table 2 compares the result with three baselines. 
The first chooses a random sense from the anchor’s list of 
destinations. Another always chooses the most common sense. 
The final baseline is the heuristic approach developed by 
Medelyan et al. (2008).  
Having our classifier choose what it considers to be the most valid 
sense for each term outperforms all other approaches. The key 
differences between this and Medelyan et al.’s system are the use 
of machine learning and the weighting of context. These provide a 
76% reduction in error rate. The classifier never gets worse than 
88% precision on any of the documents, and for 45% of 
documents it attains perfect precision. Recall is never worse than 
75%, and perfect for 14% of documents. Recall can be increased 
by allowing the classifier to select all valid senses. Unfortunately 
this causes precision to degrade and makes for slightly lower 
overall performance. Consequently strict disambiguation is used 
throughout the remainder of this paper. 
Mihalcea and Csomai’s best disambiguation technique had an f-
measure of 88%. Direct comparison may not be fair, however, 
since their disambiguation approach was evaluated on an older 
version of Wikipedia. One could argue that the task gets more 
difficult over time as more senses (Wikipedia articles) are added, 
in which case it is encouraging that our approach (which was run 

 recall precision f-measure
 Naïve Bayes 96.6 95.0 95.8 
 C4.5 96.8 96.5 96.6 
 Support Vector Machines 96.5 96.0 96.3 
 Feature selected C4.5 96.8 96.5 96.6 
 Bagged C4.5 97.3 96.5 96.9 

 
Table 1: Performance of classifiers for disambiguation over 
development data 

 recall precision f-measure
 Random sense 56.4 50.2 53.1 
 Most common sense 92.2 89.3 90.7 
 Medelyan et al. (2008) 92.3 93.3 92.9 
 Most valid sense 95.7 98.4 97.1 
 All valid senses 96.6 97.0 96.8 

 
Table 2: Performance of disambiguation algorithms over final 
test data 
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Figure 3: Disambiguation performance vs. minimum 
sense probability.    



on newer data) gains better results. On the other hand 
disambiguation may well be getting easier over time. The baseline 
of simply choosing the most common senses has improved since 
Mihalcea and Csomai’s experiments, which shows that common 
senses are becoming more and more dominant. Consequently any 
algorithm that is trained and tested on the newer documents will 
inherently have a higher accuracy. In any case, our approach is 
competitive and has a distinct advantage of not requiring parsing 
of the text. This significantly reduces the resources required and, 
in principle, provides language independence. Additionally the 
system requires much less training (500 articles vs. the entire 
Wikipedia). On a modest desktop machine (with a 3Ghz Dual 
Core processor and 4Gb of RAM) the new disambiguator was 
trained in 13 minutes and tested in four, after spending another 
three minutes loading the required summaries of Wikipedia’s link 
structure and anchor statistics into memory.  
This evaluation can also be considered as a large-scale test of our 
Wikipedia link-based measure. Just the testing phase of the 
experiment involved more than two million comparisons in order 
to weight context articles and compare them to candidate senses. 
When these operations were separated out from the rest of the 
disambiguation process they where performed in three minutes (a 
rate of about 11,000 every second) on the desktop machine.  

4. LEARNING TO DETECT LINKS 
This section describes a new approach to link detection. The 
central difference between this and Mihalcea and Csomai’s 
system is that Wikipedia articles are used to learn what terms 
should and should not be linked, and the context surrounding the 
terms is taken into account when doing so. Wikify’s detection 
approach, in contrast, relies exclusively on link probability. If a 
term is used as a link for a sufficient proportion of the Wikipedia 
articles in which it is found, they consider it to be a link whenever 
it is encountered in other documents—regardless of context. This 
approach will always make mistakes, no matter what threshold is 
chosen. No matter how small a terms link probability is, if it 
exceeds zero then, by definition, there is some context in which 

has been used as a link. Conversely, no matter how large the 
probability is, if it is less than 1 there is some context where it 
should not be used a link. Thus this approach will always discard 
relevant links and retain irrelevant ones, regardless of chosen 
threshold. We are able to gain much better results by only using 
link probability as one feature among many.  

4.1 A machine-learning link detector 
The link detection process starts by gathering all n-grams in the 
document, and retaining those whose probability exceeds a very 
low threshold. This threshold—the value of which is established 
in the next section—is only intended to discard nonsense phrases 
and stop words. All the remaining phrases are disambiguated 
using the classifier described in the previous section. As shown in 
Figure 4, this results in a set of associations between terms in the 
document and the Wikipedia articles that describe them, which is 
obtained without any form of part-of-speech analysis. Sometimes, 
as is the case with Democrats and Democratic Party, several 
terms link to the same concept if that concept is mentioned more 
than once. Sometimes, if the disambiguation classifier found more 
than one likely sense, terms may point to multiple concepts.  
Democrats, for example, could refer to the party or to any 
proponent of democracy. 
These automatically identified Wikipedia articles provide training 
instances for a classifier. Positive examples are the articles that 
were manually linked to, while negative ones are those that were 
not. Features of these articles—and the places where they were 
mentioned—are used to inform the classifier about which topics 
should and should not be linked. The features are as follows. 

Link Probability. Mihalcea and Csomai’s link probability is a 
proven feature. On its own it is able to recognize the majority of 
links. Because each of our training instances involves several 
candidate link locations (e.g. Hillary Clinton and Clinton in 
Figure 4), there are multiple link probabilities. These are 
combined into two separate features: the average and the 
maximum. The former is expected to be more consistent, but the 
latter may be more indicative of links. For example, Democratic 

Figure 4: Associating document phrases with appropriate Wikipedia articles
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Party has a much higher link probability than the party. As a 
matter of style, this document only refers to it once by its proper 
name. The fact that it was important enough to be referred to in 
full is a strong indication of link-worthiness, but this information 
is lost when the probabilities are averaged. 

Relatedness.  Intuitively, one would expect that topics which 
relate to the central thread of the document are more likely to be 
linked. Clinton, Obama, and the Democratic Party are more 
likely to be of interest to the reader than Florida or Michigan. 
Recall that we have already gone to some lengths to obtain 
relatedness score between each topic and its surrounding context, 
in order to disambiguate them. This provides a relatedness feature 
with no further computation. However, since the semantic 
relatedness comparisons are all but free, we augment this with a 
second feature: the average relatedness between each topic and all 
of the other candidates.  

Disambiguation Confidence. The disambiguation classifier 
described earlier does not just produce a yes/no judgment as to 
whether a topic is a valid sense of a term; it also gives a 
probability or confidence in this answer. We use this as a feature 
to give those topics that we are most sure of a greater chance of 
being linked. As with link probability, there may be multiple 
confidence values for each instance because several different 
terms may be disambiguated to the same topic. These are again 
combined as average and maximum values, for the same reasons. 

Generality. It is more useful for the reader to provide links for 
specific topics that they may not know about, rather than general 
ones that require little explanation. We define the generality of a 
topic as the minimum depth at which it is located in Wikipedia’s 
category tree. This is calculated beforehand by performing a 
breadth-first search starting from the Fundamental category that 
forms the root of Wikipedia’s organizational hierarchy. 

Location and Spread. The remaining features are based on 
the locations where topics are mentioned; i.e. the n-grams from 
which they were mined. Frequency is an obvious choice, since the 
more times a topic is mentioned, the more important and link-
worthy it is. Another is first occurrence because, as observed by 
David et al. (1995), topics mentioned in the introduction of a 
document tend to be more important. Significant topics are also 
likely to occur in conclusions, so last occurrence is also used. 
Finally the distance between first and last occurrences, or spread, 
is used to indicate how consistently the document discusses the 
topic. These last three location-based features are all normalized 
by the length of the document.  

4.2 Training and configuration  
As with the disambiguation classifier, we have set aside three 
different sets of Wikipedia articles for training, configuration and 
evaluation. The same 500 articles used to train the disambiguation 
classifier are used for training here. This is done to reduce the 
number of disambiguation errors, because these directly affect the 
quality of training. As described earlier, terms must be 
disambiguated into appropriate articles before they can be used as 
training instances. If a valid link were disambiguated incorrectly 
then many of its features would indicate a valid link, but the 
instance would be a negative example. Reusing the training data 
reduces the chance these confusing examples occurring. 

Likewise, configuration is done on the same 100 articles used to 
configure the disambiguation classifier, simply because there is 
no reason not to reuse them. The only variable to configure is the 
initial link probability threshold used to discard nonsense phrases 
and stop words. This variable sets up a tradeoff with speed and 
precision on one side and recall on the other, since a higher 
threshold means only the most likely instances are inspected, but 
risks discarding valid links. Figure 5 plots this tradeoff, and 
identifies 6.5% link probability as the point where precision and 
recall are balanced. 
Despite our choice of training data, we found that the 
disambiguation classifier described in Section 3 performed quite 
poorly when used as part of the wikification classifier. It became 
very accepting, considering not just one or two senses to be valid 
for each term, but five or six. This is because the disambiguator 
was trained on links, but is being used here on raw text. In 
training, the context was restricted to manually defined anchors, 
but here it is mined from all unambiguous terms that have a link 
probability above the initial threshold. The problem was resolved 
by modifying the disambiguation training to take these other 
unambiguous terms into account. The resulting disambiguation 
classifier was 1% worse (f-measure) when disambiguating links, 
but behaves more consistently when incorporated into the 
wikifier. 
Table 3 lists the results of the various classifiers we experimented 
with. Naïve Bayes performs reasonably well since all of the 
features are fairly independent. Again, C4.5 outperforms support 
vector machines overall, although the latter attains significantly 
higher precision. The evaluation described in the next section uses 
bagged C4.5 in order to gain the best overall results.  

4.3 Evaluation 
Evaluation of the link detector was performed over an entirely 
new randomly selected subset containing 100 Wikipedia articles. 
Ground truth was obtained by gathering the 9,300 topics that 
these articles were manually linked to. The articles were then 

 recall precision f-measure
 Naïve Bayes 70.2 70.3 70.2 
 C4.5 77.6 72.2 74.8 
 Support Vector Machines 72.5 75.0 73.7 
 Bagged C4.5 77.3 72.9 75.0 

 

Table 3: Performance of classifiers for link detection 
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Figure 5: Link detection performance vs. minimum link 
probability.  



stripped of all markup and handed to the link detector, which 
produced its own list of link-worthy topics for each article. This 
evaluation is only concerned with identifying the correct topics 
that should be linked to, and not the exact locations from which 
these links should be made. This is consistent with Mihalcea and 
Csomai’s work, which compared vocabularies of anchors, but not 
their locations.  
The result is shown in Table 4, where recall, precision, and f-
measure are all approximately 74%. There is a marked drop in 
performance between disambiguating links and detecting them, 
but this is to be expected. Deciding where a link should be made 
to is far less subjective than deciding whether the link should be 
made at all. The time required is also significantly increased, even 
though many of the features are carried over from the 
disambiguator. The link detector was trained in 37 minutes, and 
tested (while simultaneously performing disambiguation) in 8 
minutes. 
Wikify’s two stages of detection and disambiguation were 
evaluated individually, but the combined result when both 
operated together was not reported. In our approach the two 
stages are inseparable, which makes comparison difficult. 
Fortunately one can estimate Wikify’s overall accuracy by 
assuming that disambiguation performance is constant across all 
terms, and combining recall and precision across the two steps as 
we have done in Table 4. Even if we were to assume perfect 
disambiguation, the upper bound of this system would be an f-
measure of 55%. This shows how our algorithm dramatically 
improves upon its predecessor. Recall is increased by 59% over 
the estimate, precision by 50%, and overall f-measure by 54%. As 
with the previous experiment, a limitation of this comparison is 
that the two link detection approaches were developed and 
evaluated on different versions of Wikipedia.  

5. WIKIFICATION IN THE WILD 
All of the experiments described up until this point have treated 
Wikipedia as both training ground and proving ground. Even 
though we have taken steps to ensure that training and testing sets 
are kept separate, it is still reasonable to wonder whether the 
process works as well (or at all) on documents that are not 
obtained from Wikipedia. This section aims to address such 
concerns by applying our techniques to new documents, and 
placing the results in front of human evaluators.  

5.1 Experimental Data 
The test set for this experiment is a subset of 50 documents from 
the AQUAINT text corpus: a collection of newswire stories from 
the Xinhua News Service, the New York Times, and the 
Associated Press. We randomly selected documents from the last 
of these providers, restricting selection to short documents (250-
300 words) to avoid overtaxing the attention spans of the human 
evaluators.  
As training we use another collection of 500 Wikipedia articles. 
The original intention was to use exactly the same set as the 

previous experiments, but unfortunately the difference in size 
between these verbose encyclopedic articles and the short news 
stories produced a classifier that identified very few link-worthy 
topics. Consequently we created a new training set by gathering 
all of the Wikipedia articles of the same length as the newswire 
stories, and selecting those that contained the highest proportion 
of links. The resulting classifier identified 449 link-worthy topics 
within the 50 newswire stories, an average of 9 links per 
document. Figure 1 shows one of these automatically tagged 
documents. 

5.2 Participants and Tasks 
To gather willing participants to inspect the wikified news stories 
we turned to Mechanical Turk (Barr and Cabrera 2006), a crowd-
sourcing service hosted by Amazon. This service provides what 
Barr and Cabrera describe as artificial artificial intelligence; a 
way for human judgment to be easily incorporated into software 
applications. From the perspective of the people who develop 
these applications—who are known as requestors—the process is 
a function call where a question is asked and the answer is 
returned. What makes this system unique is the thousands-strong 
crowd of human contributors—or workers—who wait at the 
receiving end of the calls. These people identify the tasks they are 
interested in, submit their responses, and (pending review) receive 
payment for their efforts. 
For our purposes, Mechanical Turk provided the means to 
conduct a labor-intensive experiment under significant time 
constraints, without having to gather participants ourselves. 
Naturally this raises some concerns about whether the anonymous 
workers could be trusted to invest the required effort and give 
well considered responses. Even more alarming, it is possible for 
Mechanical Turk tasks to be done by automated “bots” created to 
gather funds for unscrupulous would-be workers (Howe 2006). 
We implemented several checks to identify and reject low-quality 
responses and undesirable participants. These are discussed in the 
following sections, which describe the two different types of tasks 
that we had the workers perform.  

Evaluating detected links 
To evaluate the quality of the links that the system produced, we 
created 449 different tasks; one for each of the links. In each task 
the evaluator was given the text of the news article exactly as 
shown in Figure 1, except with only one of the links shown. As is 
demonstrated for Baghdad in the figure, the link was presented 
with a popup box containing the first paragraph of the relevant 
Wikipedia article. This allowed both the context of the link and its 
intended destination to be taken in at a glance. The participant 
was then given the following options to specify whether the link 
was valid: 

• No - Baghdad is not a plausible location for a link. 

• No - Baghdad is a plausible location, but the link doesn't 
go to the right Wikipedia article. 

• Kind of – Baghdad is a plausible link to the correct 
Wikipedia article, but the article isn't helpful or relevant 
enough to be worth linking to. 

• Yes - Baghdad is a plausible link to the correct Wikipedia 
article, and this article is helpful and relevant. 

 recall precision f-measure
 Wikify (estimate) 46.5 49.6 48.0 
 Wikify (upper bound) 53.4 55.9 54.6 
 New link detector 73.8 74.4 74.1 

 

Table 4: Performance of link detection algorithms 



Only the last option indicates that the link was detected correctly. 
The other three identify the different reasons why the algorithm 
made a mistake. The first indicates a term or phrase should not 
have been considered as a candidate, the second identifies a 
candidate that was disambiguated incorrectly, and the third  
indicates a candidate that should have been discarded in the final 
selection stage. It should be noted that judging the helpfulness and 
relevance of a link is subjective. In order to do so, participants 
were asked to put themselves in the shoes of someone who was 
genuinely interested in the story, and judge whether the linked 
Wikipedia article would be worthy of further investigation.  
To cope with subjectivity and verify individual responses, each 
task was performed by three different people. To ensure that the 
task was completed by real participants (rather than bots), each 
task was paired with a unique completion code that had to be 
submitted alongside the answer. To ensure that participants gave 
well considered answers, this code was only made available after 
the worker had spent at least 30 seconds inspecting the link and 
its surrounding context. An additional check was to only accept 
workers who had gained a high reputation from other requestors, 
by having at least 90% of their responses to previous tasks 
accepted and rewarded. After rejecting and returning invalid 
submissions, we eventually gathered responses from 88 different 
people, who evaluated an average of 15 and a maximum of 156 
links each. They spent an average of 1.5 minutes on each link, 
giving a total of 36 man hours of labor.  

Identifying missing links 
A second type of task was created to identify the links that our 
algorithm should have detected, but failed to. In each of the 50 
tasks (one for each document) the evaluator was given the news 
story with all of the detected links clearly identified, exactly as 
shown in Figure 1. Again each link could be clicked to reveal a 
popup box that summarized the intended destination. The 
participants were then asked to list any additional Wikipedia 
topics that they felt should be linked to, by supplying both the 
phrase where the link should start from and the URL of the 
Wikipedia article it should go to. They were asked not to add 
every single concept that was mentioned, since this is not what 
wikification aims to do. Instead they were instructed to only 
choose articles that were relevant for the news article, and which 
readers would likely to want to investigate further.  
We implemented the same checks as before to ensure that the 
answers were genuine and well-considered. Due to the increased 
difficulty and subjectivity of these tasks, each was conducted by 
five different participants, and the minimum time spent on them 
was increased to five minutes. After rejecting and returning 
invalid submissions, we eventually gathered responses from 29 
different people, who evaluated an average of 8.6 and a maximum 
of 35 documents each. In total they invested 47 man hours of 
labor, or an average of 11 minutes on each document.  

5.3 Results   
As is to be expected for subjective tasks, there was some 
disagreement between the evaluators. In the case of the first group 
of tasks this was unfortunately exacerbated by ambiguity. When 
an evaluator encountered a link that they felt was irrelevant, such 
as 1980 in Figure 1, they had two equally valid responses 
available: they could say that the location of the link was 
implausible, or that the Wikipedia article it pointed to was 

unhelpful. We resolved this issue by combining the responses in 
the analysis stage into a single option: that the link was irrelevant 
and/or unhelpful. Following this combination, we found that 57% 
of the links received a unanimous decision from all three 
evaluators. Almost all of the remaining links received a two-vs.-
one vote, for which the majority decision was considered correct. 
3% of the links received different responses from all of the 
evaluators. Because there is only one possible response that 
indicates a valid link, these were judged to be incorrect—for an 
unknown reason.  
Table 5 shows the results. Here we see that the precision of the 
algorithm is 76%, meaning that 34% of the links were incorrect. 
Almost all of the mistakes were due to incorrect candidate 
identification or selection, with only four links identified as being 
incorrectly disambiguated. As mentioned earlier, about 3% of the 
links were judged differently by all of the evaluators, and thus the 
reason for their rejection could not be identified.   
For the second type of task, the evaluators identified just under 
400 distinct Wikipedia articles that they felt were worthy of 
linking to. This equates to around 8 additional links per 
document. Because of the subjectivity of the task, the participants 
did not entirely agree on the articles that were to be added. The 
majority (53%) of additional links were only identified by one of 
the participants. 17% were identified by two participants, 13% by 
three, another 13% by four, and only 4% were unanimously 
considered to be missing by all five participants. To compile the 
diverse opinions into coherent judgments, we required that the 
majority (at least 3) of the participants identify a link before it 
was considered link-worthy. This produced 117 links that the 
algorithm should have added to the documents, but didn’t. 
The results of both sets of tasks were used to correct the original 
automatically-tagged articles and generate ground truth. The four 
links that were identified as pointing to the wrong article were 
manually corrected by the authors. All of the remaining invalid 
links were simply discarded, and the missing links that were 
identified by the majority of our participants were added. The 
result is a new corpus containing only manually-verified links, 
which we have made available online.1 
Comparison of the original (automatically tagged) articles with 
this manually-verified corpus reveals the performance of the topic 
detector. As mentioned previously, precision is 76%; slightly 
better than when the system was tested on Wikipedia articles 
(Table 4). Recall is 73%; just one point worse than in the previous 
experiment. F-measure is 75%. Overall the figures are remarkably 
close to those obtained when the system was evaluated against 
Wikipedia articles, which indicates that algorithm works as well 
“in the wild” as it does on Wikipedia.  

                                                                 
1 The manually verified and corrected corpus of wikified news 

articles is available at www.nzdl.org/wikification 

 correct 76.4 
 incorrect (wrong destination) 0.9 
 incorrect (irrelevant and/or unhelpful)  19.8 
 incorrect (unknown reason) 2.9 

 

Table 5: Accuracy of the automatically detected links. 



6. EXAMPLES AND IMPLICATIONS 
We have described an algorithm that disambiguates terms to their 
appropriate Wikipedia articles, and determines those that are most 
likely to be of interest to the reader. It is easy to imagine 
applications for this, such as adding explanatory links news 
stories or educational documents, or detecting missing links in 
Wikipedia articles and smoothing the process for contributing to 
them. However, this barely scratches the surface of potential 
applications.  
In essence, we have developed a tool that can accurately cross-
reference documents with the largest knowledge base in 
existence. It can provide structured knowledge about any 
unstructured document, because it can represent them as graphs of 
the concepts they discuss. As an illustration of this, Figure 6 
shows a sample of topics that were automatically extracted from 
the content of this paper, where a link between two topics 
indicates that they have a significant relation between them 
according to the Wikipedia link-based measure. For clarity sake 
only a small sample of the relations are shown. Computer 
Science, for example, relates to almost every other topic. 
The graph isn’t perfect, since it is missing key concepts such as 
wikification and disambiguation. Nevertheless, it provides a very 
clear sense of what this paper is about. It resolves ambiguity, so 
we know exactly what type of ontology is mentioned. It does the 
same for polysemy, so it doesn’t matter if the document talked 
about knowledge discovery, knowledge mining, data mining, or 
KDD—they are all the same thing. By navigating the 
relationships of meaning between the topics, one can identify the 
threads of discussion; there is a cluster of topics relating to 
ontologies and knowledge bases, another to natural language 
processing, and another to machine learning. More formal 
reasoning can be made available by taking the (trivial) step of 
connecting to Wikipedia-derived ontologies such as DBPedia 
(Auer et al. 2007), Yago (Suchanek et al. 2007), and others 

(Völkel et al. 2006, Ponzetto and Strube 2007). Using these 
resources one could tell, for example, that Hamilton is a city in 
New Zealand, and that it is the home of the University of Waikato. 
All of this adds up to a machine readable representation of the 
document that is extremely informative.   

7. CONCLUSIONS 
We are by no means the first to recognize Wikipedia’s potential 
for describing and organizing information. It is fast becoming the 
resource of choice for such tasks, and has been applied to text 
categorization (Gabrilovich and Markovich 2007), indexing 
(Medelyan et al. 2008), clustering (Banerjee et al. 2007), 
searching (Milne et al. 2007), and a host of other problems. This 
popularity is entirely understandable: Wikipedia offers scale and 
multilingualism that dwarfs other knowledge bases, and an ability 
to evolve quickly and cover even the most turbulent of domains 
(Lih 2004).  
All these applications of Wikipedia face the same hurdle: they 
must somehow move from unstructured text to a collection of 
relevant Wikipedia topics. Researchers have discovered many 
different ways of doing so, but most have not been evaluated 
independently. Instead these methods are only evaluated 
extrinsically, by how well they support the overall task.  
The present paper’s contribution is a proven method of extracting 
key concepts from plain text that has been evaluated against an 
extensive body of human performance. This has extraordinarily 
wide application. Any task that is currently addressed using the 
bag of words model, or with knowledge obtained from less 
comprehensive knowledge bases, could benefit from using our 
technique to draw upon Wikipedia topics instead. We have shown 
how to reap a bountiful and unexpected new harvest from the 
countless man-hours that have already been invested by the Web 
2.0 community to explain and organize the sum total of human 
knowledge about our world. 

Figure 6: Topics and relations automatically extracted from the content of this paper. 
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