
Development of a

Propositionalization Toolbox

A thesis

submitted in partial fulfillment

of the requirements for the degree

of

Master of Science in Applied Computer Science

at the

University of Freiburg

by

Peter Reutemann

Department of Computer Science Department of Computer Science
Freiburg, Germany Hamilton, New Zealand, Aotearoa

23 June, 2004

I declare that I did not draw up the whole thesis nor parts of it for anotherfulfillment of
the requirements of the degree of Master of Science in Applied Computer Science at the
University of Freiburg. Further I declare that I worked autonomously and only used the
stated resources. All excerpts cited from publications or unpublished scripts are indicated.

Hamilton, 23 June, 2004

There is a theory which states that if ever anyone discovers exactly whatthe Universe is
for and why it is here, it will instantly disappear and be replaced by something even more
bizarre and inexplicable.

There is another theory which states that this has already happened.

— Douglas Adams

Acknowledgements

Even though I did write this thesis alone there were still a lot of other people involved for
getting it on the way...
Foremost I want to thank my supervisors Dr. Eibe Frank and Dr. Bernhard Pfahringer, who
really did a great job in guiding me through this time, but also letting me explore my own
ideas. Even though our meetings sometimes looked like a tribunal to me, they werealways
fruitful and inspiring. I could always get handy advice regarding problems I encountered
during the development of my project.
The working environment of the Machine Learning group here at WaikatoUniversity is a
reason to extend my stay here in New Zealand: it’s outstanding. Thanks to that you can
even manage to slave away day and night in a windowless lab...
Furthermore I am grateful to Professor Luc De Raedt, head of the Machine Learning group
at the University of Freiburg, for offering me the opportunity to stay at theUniversity of
Waikato and co-supervising this thesis. I also wish to thank Associate Professor Geoff
Holmes for providing the opportunity to German students to write their thesis at theWaikato
Machine Learning group. In addition, I am very thankful for the financial support I received
from the University of Waikato.
For getting this thesis started I owe one to Mark-A. Krogel, Otto-von-Guericke-Universiẗat
in Magdeburg/Germany, and Filip̌Zelezńy, Czech Technical University in Prague/Czech
Republic, for letting me use their source code and/or datasets.
Last but not least, I would like to thank all the people I met in New Zealand whobecame
dear to me. They helped me to find my way (on the “right” side of the road) in this country
and motivated and supported me during my thesis. In particular I would like to mention:
Stefan Mutter, Greger Burman, Ingmar Kühn, Nicole ”Essen” Urban, Professor Wilhelm
Steinbuß, Tillmann B̈ohme, Anke L̈ohlein, the Kiwi Dale ”Auf Lederhosen” Fletcher and
of course PG for the highlight of the day.

Contents

List of Figures iii

List of Tables v

1 Introduction 1

1.1 Relational Learning . 2

1.2 Multi-Instance Learning . 5

1.3 Propositional Learning . 6

2 Proper 7

2.1 Import . 7

2.2 Propositionalization and Conversion into Multi-Instance Data 12

2.2.1 RELAGGS . 13

2.2.2 Joiner . 16

2.2.3 REMILK . 17

2.3 Export . 18

2.4 Tools . 18

2.4.1 Relations . 19

2.4.2 Experiments . 20

2.4.3 Viewing ARFF files . 21

2.4.4 Distributed Experiments . 21

3 Related Work 29

3.1 MIWrapper . 29

3.2 RSD . 30

3.3 SINUS . 31

3.4 Stochastic Discrimination . 32

i

4 Experiments 35

4.1 Datasets and Settings . 35

4.2 Results . 39

4.2.1 Setting 1 . 39

4.2.2 Setting 2 . 41

4.2.3 Setting 3 . 43

4.2.4 Setting 4 . 45

4.2.5 Setting 5 . 47

4.2.6 Setting 6 . 49

4.3 Comparison of RELAGGS and Joiner . 51

4.4 Tree sizes and runtimes . 51

4.5 Summary . 55

5 Conclusion and Future Work 57

A Implementation 61

A.1 Execution . 61

A.2 Class Diagrams . 65

A.3 Development . 90

B Proper Manual 91

B.1 Main Menu . 91

B.2 First Steps . 101

C Datasets 121

Bibliography 123

ii

List of Figures

1.1 Proper from a logical perspective. .2

2.1 Proper from the program perspective. 7

2.2 Overview of the Import in Proper. 8

2.3 Example of the East-West-Challenge (c represents the car andl the load). . 8

2.4 East-West-Challenge in a logical representation.9

2.5 East-West-Challenge as relational database.9

2.6 The post-processing of imported data in detail. 10

2.7 Different settings forAlzheimer/lesstoxic: first argument as key, two keys

symmetric, two keys asymmetric. 12

2.8 East-West-Challenge joined for RELAGGS. 17

2.9 East-West-Challenge joined for MI learner. 17

2.10 Relations- tool for exploring the relations in a database. Here a user defined

tree is displayed for anAlzheimerdataset. With themax. Depthoption the

user can let Proper suggest a relation tree that can be edited afterwards. . . 19

2.11 Relation tree for the East-West-Challenge, wherec represents acar andl

the correspondingload . 19

2.12 Excerpt of an ANT file generated with theBuilder (the “...” denotes omis-

sions). 20

2.13 Builder - enables the user to build arbitrary experiments. 21

2.14 ArffViewer- for viewing and editing ARFF files. 22

2.15 Basic overview of the Client-Server-Architecture. 22

2.16 Example run of the distributed experiments. 23

2.17 Simple and extended synchronization scheme. 25

2.18 Visualization of the extended synchronization scheme as “dripping apparatus”. 25

2.19 Screenshot of theJobberfront-end. 26

iii

2.20 Interaction of theJobMonitorwith theJobServerandJobClients. 27

3.1 Artificial Dataset. 30

3.2 Chemical fragmentC-C=C . 32

3.3 Chemical fragment as SQL query. 33

3.4 Graphical representation of the SQL query - thebond predicate is split into

two, since it contains twoatoms (thesplit id identifies the entries that

belong together). The grey boxes depict the building blocks for longer and

branched fragments . 34

4.1 Comparison for Setting 1. 40

4.2 Comparison for Setting 2. 42

4.3 Comparison for Setting 3. 44

4.4 Comparison for Setting 4. 46

4.5 Comparison for Setting 5. 48

4.6 Comparison for Setting 6. 50

4.7 Performance comparison of RELAGGS and Joiner on the Alzheimer dataset

(the suffices indicate the step referenced in the text). The used classifierwas

the tree-classifier J48 with default values. 52

A.1 General overview of the flow of parameters inside the framework. 62

A.2 Execution of a command lineApplication. 62

A.3 Execution of aCommandLineFrame - the execution of anEngine is

omitted. 63

iv

List of Tables

1.1 First-Order-Logic and Database terms. 3

2.1 DTDs and examples of messages sent betweenJobServerandJobClient(s). 24

3.1 Unpruned decision trees for the artificial dataset, containing 4 bags with 4

instances each. 30

4.1 Overview of the produced data, where each column shows the values for

RELAGGS/Joiner/REMILK. 37

4.2 Settings for the experiments. In case of multi-instance data the MIWrapper

was used with default parameters. 37

4.3 Different behavior of the originalNominalToBinaryfilter and the modified

version, if nominal attribute contains only two distinct values (“att” is the

name of the example attribute). Missing values are replaced with “0”. . . . 37

4.4 Accuracy and standard deviation for Setting 1.40

4.5 Accuracy and standard deviation for Setting 2.42

4.6 Accuracy and standard deviation for Setting 3.44

4.7 Overview of portion of attributes with missing values in thealzheimertoxic,

genesgrowth and thrombosismulti-instance datasets (generated with the

Joiner). It is checked how many attributes (in percent) have a percentage of

missing values above a certain threshold. This is done forAll attributes and

only for Nominalones. 44

4.8 Accuracy and standard deviation for Setting 4.46

4.9 Accuracy and standard deviation for Setting 5.48

4.10 Accuracy and standard deviation for Setting 6. 50

v

4.11 Tree size for AdaBoostM1/pruned J48 averaged over 10 iterations(only

datasets with results for all three approaches were considered for the “Small-

est Tree” count). 53

4.12 Runtimes in seconds for AdaBoostM1/pruned J48 (i.e. time to build the

classifier for printing the tree and to execute 10 runs of 10-fold CV). Only

datasets with results for all three approaches were considered for the “Fastest”

count. 54

4.13 Runtimes in seconds for different database systems (Imp. = Import, REL = RELAGGS,

Joi. = Joiner, REM = REMILK).Note: “col” means that too many columns

were produced (but not necessarily a program termination), “abort” that the

process was aborted, because consuming too much time, and “-” that the

process was not executed at all. 54

vi

Chapter 1

Introduction

Zwar weiss ich viel, doch m̈ocht’ ich alles wissen.
(And so I know much now, but all I fain would know.)

— Wagner in Goethe’s Faust

Are you using a reward card like Miles-and-More, Fly Buys or do you own a shopping card?

Did you ever get “junk-mail” from the companies participating in that reward system? Did

you ever wonder why their recommendations were so specific?

What they do is building up a profile from all the purchases you do, from the preferences you

enter on their websites, the websites you visit. From this data they are able to recommend

other articles from their stores or services they provide.

But howdo they build such a profile?

The basis for that is most likely a relational database, currently the predominant way to

store data, that contains all the transactions or orders you did, etc. The problem here is, how

to get any interesting information of patterns out of it or in other words to perform “data

mining”.

Many well-known machine learning and data mining algorithms are propositionalones, i.e.

they only operate on a flat table, a single relation, and not a relational modelwith several

relations. This relational data, which is actually only accessible to a relationallearner, like

Claudien [De Raedt, 1997], TILDE [Blockeel & De Raedt, 1998], Warmr[Dehaspe & De

Raedt, 1997], etc., can be transformed into a form suitable for a propositional learner in

a general manner. The process of creating new features from these relational properties

is calledpropositionalization(cf. [Kramer et al., 2001]). But propositionalization has also

some drawbacks as will be shown later in this chapter.

1

Even though this thesis will not describe how to develop a reward system likementioned

above, it will still present an attempt to implement a general framework, the Proper Tool-

box1, for creating propositional and multi-instance data from relational data. Incontrast

to many relational learners, which are based on Prolog databases, Proper is SQL-database-

oriented to be easily applicable in the “real world”. Additionally to the command linebased

tools, the user will find several graphical user interfaces aiding him in setting up experi-

ments.

After a short introduction about the different types of learners (propositional, multi-instance

and relational), the Proper framework will be presented in detail, including the different

steps that take place for transforming relational data. Figure 1.1 gives a short overview of

the transformation process taking place in Proper. Related approaches and whether they

can be integrated into the existing framework will be discussed in the following chapter.

The framework will be tested on well-known benchmark datasets with different settings, of

which results will be presented in the Experiments Section. Finally, this thesis closes with

a short summary and an outline of what future work there is still to be done.

Figure 1.1: Proper from a logical perspective.

1.1 Relational Learning

The above mentioned relational learners are all implemented in Prolog, using first-order-

logic (FOL). Prolog represents a powerful formalism for expressing relations, due to vari-

ables and recursion. For a better understanding for the terms used in FOL, Table 1.1 gives

an overview of the corresponding terms in the FOL and the database domain (taken from

[Džeroski, 2002]).

1Proper is freely available from http://www.cs.waikato.ac.nz/ml/proper/.

2

First-Order-Logic Database
predicate symbol relation name
argument of predicate attribute of relation
ground fact of predicate tuple of relation
predicate defined extensionally relation as set of tuples

Table 1.1: First-Order-Logic and Database terms.

The task for a relational learner is now to find interesting patterns in case ofdata mining or

predicting classes concerning a prediction task. The latter case is tackled inthis thesis and

[Kramer et al., 2001] defines this prediction task as follows:

Starting with some evidenceE (i.e. examples) and an initial theoryB (back-

ground knowledge), the task is to find a theoryH (i.e. hypothesis) thatexplains

in combination withB some properties ofE.

For the East-West-Challenge the prediction task could look like this (taken from [Flach,

2002]):

- ExampleE

eastbound([car(rect, short, none, 2, load(circ, 1)),
car(rect, long, none, 3, load(hexa, 1)),
car(rect, short, peak, 2, load(tria, 1)),
car(rect, long, none, 2, load(rect, 3))]).

- Background KnowledgeB

member/2, arg/3

- HypothesisH

eastbound(T) :- member(C,T), arg(2,C,short), not arg(3,C,none).

To determine the feasibility of transforming one learning task into another one,e.g. from

relational to multi-instance, one can use the following definitions given by [DeRaedt, 1998].

Parameters concerning the database are:

- r: number of relations

- i: maximum number of tuples of an example in a single relation

- a: maximum arity of a relation

- d: maximum number of values of a given attribute

- e: number of examples

3

For a hypothesis these parameters exist:

- T : maximum number of tuple variables in a clause of the hypothesis

- J : maximum number of literals of typeVi = Ui in a clause (representing join opera-

tions)

- C: maximum number of rules in a hypothesis

With these parameters [De Raedt, 1998] then derives the following estimations:

- Data ComplexityDC, the size of the dataset:

DC = O(e · i · a · r)

- Query ComplexityQC, the complexity of testing whether a clause rule covers an

example:

QC = O((iM · a · M) + i · a · (T − M)), with M = min(J + 1, T)

- Number of different rules in hypothesis languageHR:

HR = O(rT
· (d + 1)aT

· (a · T)2J)

The only condition that applies for relational data is thatr > 1. Rewriting the above

mentioned example of the East-West-Challenge into normal form, one gets this clause (with

Tx as atrain variable andCy as acar variable):

eastbound :- car(T1, C1, rect, short, none, 2), load(C2, circ, 1),
car(T2, C3, rect, long, none, 3), load(C4, hexa, 1),
car(T3, C5, rect, short, peak, 2), load(C6, tria, 1),
car(T4, C7, rect, long, none, 2), load(C8, rect, 3),
T1 = T2, T2 = T3, T3 = T4,
C1 = C2, C3 = C4, C5 = C6, C7 = C8

And from that the following values for the parameters can be derived:

r = 3 (‘eastbound‘, ‘car‘, ‘load‘)

i = 4 (eastbound has 4 ‘car‘ entries and 4 ‘load‘ entries)

a = 6 (car has 6 arguments)

d = 4 (load has ‘circ‘, ‘hexa‘, ‘tria‘ and ‘rect‘)

e = 1 (only 1 example given)

T = 8 (4 times ‘car‘ and 4 times ‘load‘)

J = 7 (7 comparisons)

C = 1 (1 rule in the hypothesis)

4

Applied to the equations one obtains these figures:

DC = O(72)

QC = O(6 · 219) ≈ O(3.1 · 106)

HR = O(38
· 548

· 4814) ≈ O(8.0 · 1060)

It is quite obvious that even in this “toy dataset” (with just one example) an exhaustive

search in the hypothesis spaceHR is not feasible, due to the combinatorial explosion.

1.2 Multi-Instance Learning

In case of multi-instance data there is only one relation (r = 1), one tuple variable (T = 1)

and no literals of typeVi = Ui allowed (J = 0). Multi-instance learning represents a

relaxation of the attribute-value learning (cf. next Section) where each instance has a class

label; in multi-instance learning several instances together have one class label. The in-

stances are grouped together in so-called “bags”. The difficulty now is that it is unclear

which instance or which instances are responsible for the class label. Oneapproach (in bi-

nary class problems) using propositional learners with this kind of data is to classify all the

instances of a bag and set the bag label topositiveif at least one of the instances was classi-

fied aspositive, negativeotherwise (cf. [Dietterich et al., 1997]). Instead of this approach,

which did provide disappointing results, another wrapper method is used throughout the

experiments in this thesis, the so-called MIWrapper as described in [Frank& Xu, 2003]. A

short introduction will be given in Section 3.1.

Multi-instance data can be obtained from relational one by joining all adjacent tables into

one table (nested relations can be joined recursively). But depending on the numberr of

relations and the aritya of these relations, the data, i.e. the number of rows, can explode

and become unmanagable.

For the “toy dataset” East-West-Challenge with 20 trains, used in the experiments in Sec-

tion 4 (cf. Table 4.1, page 37), 213 rows are generated out of these 20– but still a lot less

than the estimatedDC = O(1440) (since in this casee = 20 and not only1). It is even

worse for thesuramindataset (see also Table 4.1, page 37), where one ends up with 2378

rows, more than 200 times of the row count of the table containing the target attribute. The

impact of this explosion will be seen in Section 4.2, where the results are discussed.

5

1.3 Propositional Learning

In propositional or attribute-value learning data with only one relation and only one tuple

per example is used (i = 1, r = 1, T = 1 and J = 0). In contrast to multi-instance

data one cannot produce propositional data by joining the tables into one table, because of

loss of meaning due to multiple number of instances (cf. [Džeroski, 2002]). To avoid this

one can aggregate adjacent tables, but associated with loss of information(the individual

information for adjacent relations gets lost during the aggregation). As willbe shown later

with the RELAGGS approach the process of aggregation need not lead inevitably to worse

results compared to a multi-instance learner, rather the opposite. A problem with aggrega-

tion is the explosion of attributes in the new table. If there are many relations with alot of

attributes the aggregation process can produce more attributes than the database manage-

ment system is able to cope with. From the East-West-Challenge dataset 66 attributes are

generated through aggregation compared to the multi-instance count of 11 (cf. Setting 6 in

Table 4.1, page 37).

6

Chapter 2

Proper

This chapter will give an outline of the main building blocks of the Proper framework. It

covers all the steps that take place during a complete run, starting with the import of the data

into the database, continuing with the various types of propositionalization andgeneration

of multi-instance data, and the export of the produced data (cf. Figure 2.1). The chapter

concludes with an overview of some GUI components that aid the user in performing these

steps.

Figure 2.1: Proper from the program perspective.

2.1 Import

Proper is currently able to import the following data formats (also depicted in Figure 2.2):

- Prolog (extensional knowledge, but including ground facts with functors)

- CSV-files (with or without identifiers for the columns)

7

Figure 2.2: Overview of the Import in Proper.

For both formats the types of the columns in the table are determined automatically. Sup-

ported types areInteger , Double , Date and String . From the encountered data

the best suitable type is determined, i.e. after finding anInteger and a Double the

resulting type is thenDouble . All values representing missing values like e.g. “?”, “n/a”

or “NULL” are ignored during this determination, since they can be of any type.

Prolog

Prolog or closely related formats, like Progol or Golem that are common in the machine

learning community, can be imported into databases in such a way that each functor and

each list are represented as a separate table.

train(east,
[c(1,rectangle,short,not_double,none,2,l(circle,1)),
c(2,rectangle,long,not_double,none,3,l(hexagon,1)),
c(3,rectangle,short,not_double,peaked,2,l(triangle,1)),
c(4,rectangle,long,not_double,none,2,l(rectangle,3))]).

Figure 2.3: Example of the East-West-Challenge (c represents the car andl the load).

The example data of theEast-West-Challengein Figure 2.3 can be represented in the struc-

ture given in Figure 2.4. Since this dataset contains nested functors one does not need to

8

specify the relations between the functors explicitly. Otherwise one would have to do this by

indicating which argument index of a functor is functioning as a key, e.g. in the well-known

Alzheimerdatasets the argument that contains the compound ID.

Figure 2.4: East-West-Challenge in a logical representation.

The structure in Figure 2.3 can easily be translated into the table structure shown in Fig-

ure 2.5. Thetrain list table is actually not necessary to represent the1..n relationship,

but due to Proper’s generic approach of storing each functor and each list in a separate table,

this relation is generated. A list may not only contain functors like in this example,but any

arbitrary constant values, which then will be stored in the list table. If the order of the list

contains vital information, e.g. for discovering that the values are stored inan ascending or

descending manner, the order can be stored additionally.

Since lists increase the relational complexity, Proper has the optional built-in feature to turn

uniform lists, i.e. lists of the same length, into normal arguments and therefore ordinary

columns in the table of the functor the list is part of, instead of an extra table. Due to the

fact that thetrains have different number ofcars, thecar list cannot be transformed. In the

Mutagenesisdataset one could change the benzene rings, which always have six elements,

into normal arguments (sometimes this might not be desirable).

Figure 2.5: East-West-Challenge as relational database.

Proper also offers some more advanced features for importing Prolog. Figure 2.6 gives an

overview of the different post-processing steps that take place after the data has been parsed.

In the following the additional features are explained in detail:

- Foreign Key Relations. If the relations cannot be determined from the Prolog database

itself, e.g. if we do not have nested functors in the input, it is possible to introduce

these viaforeign key relations. During the import the functors are rearranged to fit the

9

Figure 2.6: The post-processing of imported data in detail.

10

proposed relational model. E.g. the two factsa(1, b1) and b(b1, 2) , whereb

is dependent ona, have the foreign key relationa : second = b : first (wherea has

assecond argument the key, i.e. thefirst argument, ofb). This would result in the

new relationa(1, b(2)) .

- Flattening index lists. Considering a database that contains geographical data, like

mountains, lakes, states, roads and towns, with thestateas the key for all the functors,

a ground fact for theInterstate 85would look like this: road(85, [’AL’, ’GA’,

’SC’, ’NC’, ’VA’]) . Since the key is inside a list, this list has to be broken up

into several facts:road(85, ’AL’) , road(85, ’GA’) , etc.

- Asymmetric Relationships. Depending on the representation of the data there might

be more than one argument containing a key, e.g. in theAlzheimerdatasets where

there are functors that define a relation between the two arguments:less toxic(a1,

b1) . If a relationequally toxic issymmetric, the instanceequally toxic(a1,

b1) is split into two instancesequally toxic(a1, 1) andequally toxic(b1,

1) , where the second argument is the so-calledsplit id that links both instances

together (thesplit id is also depicted in Figure 3.4 on page 34, displaying bonds

and atoms. The bond relation issymmetricsince it resides between two atoms.). In

case of theAlzheimerdatasets, which have asymmetric relationships, this kind of

processing is not a good idea. In Figure 2.7 one can see that a decision tree learner

working with the data produced by RELAGGS performs below 50%, if a symmetric

representation is chosen. For a correct representation ofasymmetricrelations, new

distinct functors are defined for each argument position:

less toxic(a1, b1) then becomes

less toxic(less toxic0(a1), less toxic1(b1)) .

One property of Prolog, the possible different arity of functors, has not been tackled so

far. it would be possible to fill the missing arguments with “NULL”, but determining the

alignment between the two functors is not a trivial task. Another solution would be the

introduction of new functors, consisting of the name and the arity as suffix,e.g. a/2 and

a/3 would then becomea 2 and a 3 . Proper assumes right now that functors of the

same name have the same number of arguments and discards others that differ in their arity.

In case that there are different arities present in the data, Proper retains the arity with the

most instances and ignores the rest.

11

0

10

20

30

40

50

60

70

80

90

100

alzheimer_toxic-1-firstarg alzheimer_toxic-2-symmetric alzheimer_toxic-3-asymmetric

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Figure 2.7: Different settings forAlzheimer/lesstoxic: first argument as key, two keys sym-
metric, two keys asymmetric.

CSV

The import of CSV files is pretty straightforward, since the data is already in acolumn-like

representation. If the file contains a header row with the names of the columns, then these

are used, otherwise a name is constructed out of the filename and the positionof the column.

By default the ‘" ’ is the text qualifier and “, ” is the column separator, but they can be

set to any value. During the import characters that are not “visible” ASCII characters (i.e.

byte values from 32–127) are filtered to avoid problems during the aggregation process. A

transformation to Unicode1, like UTF-8 or UTF-16, is preferable, but that would involve

major changes. Due to this filtering some information might get lost during the import on

other datasets than used in this thesis.

2.2 Propositionalization and Conversion into Multi-Instance Data

There are currently three algorithms available for propositionalization and creating multi-

instance data in the Proper framework, which can be used for experiments:

- RELAGGS

- Joiner

- REMILK

Each of them will be discussed subsequently, how each of them functionsand what possible

drawbacks there are.

1Unicode is the attempt to create a universal character encoding schemefor written characters and text.
More information about Unicode can be found at http://www.unicode.org/.

12

2.2.1 RELAGGS

The first algorithm we want to discuss is RELAGGS, a database-oriented approach based

on aggregations (RELationalAGGregationS). The version that was integrated is based on

what was used for the comparative evaluation in [Krogel et al., 2003]. These aggregations

are performed on the adjacent tables around the table that contains the target attribute, i.e.

for each row in the target table it performs for numeric columns both ANSI SQL [Digi-

tal Equipment Corporation, Maynard, Massachusetts, 1992] group functions likeaverage,

minimum, maximumandsum, as well as non-standard functions likestandard deviation,

quartile andrange. For nominal columns it counts the number of occurences of each value

and creates a new column for each value to store the counts. Besides theseaggregations

based on a single attribute (i.e. the primary key of the target table), it additionally calcu-

lates them on pairs of attributes. There, the other attribute has to be nominal, which serves

as an additionalGROUP BY condition [Krogel & Wrobel, 2003] besides the primary key.

RELAGGS uses the names of the primary keys to determine the relations in the database

(a drawback of the MySQL2 MyISAMtable type used in RELAGGS; even though separate

definitions of foreign key relations would be possible with theInnoDB type, the JDBC-

driver did not support this at that time).

Modifications

From preliminary experiments with the original RELAGGS implementation the following

modifications were introduced to relax the constraints RELAGGS imposes on its input data:

- Preflattening. Since the specified version of RELAGGS only aggregates directly ad-

jacent tables, Proper pre-flattens an arbitrarily nested structure. In other words: it

flattens all the branches of the tree structure into single tables, which represents a

suitable representation for RELAGGS. This is depicted in Figure 2.1, moving from

relational datato partially flattened data).

- Table hiding. The creation of temporary tables out of the branches (“preflattening”)

means that one has to hide the original tables from RELAGGS. Otherwise somedata

would be aggregated twice, since RELAGGS performs aggregation on all tables that

are in relation to the target table. Therefore RELAGGS contains now ablack listwith

2MySQL is freely available from http://www.mysql.com/.

13

tables to ignore, containing temporary tables and such that were created byother

propositionalization algorithms.

- Primary Key restriction. RELAGGS expects an integer as the primary key of a table,

which may not always be the case. In some domains, e.g. chemical domains likethe

Mutagenesisdataset, the primary key of a table is an alpha-numeric string instead.

If Proper encounters a non-integer key it automatically generates an additional table

with the relation between the original primary key and a new integer key, whichis

then used in the tables.

- Use of Indices. Determining the relation between two tables based on the primary

key alone proved to be problematic with theMutagenesisdataset, where the relation

between the different tables (Prolog ground facts) is based on the compound ID. In

case of benzene rings it is possible that there exist several rings in onecompound and

therefore having the same ID, which makes it necessary to relax the restriction from

primary keys to indices.

- Loss of data. Using ambiguous indices instead of primary keys unfortunately had

other consequences as well: posing a query to the database with an aggregation func-

tion on an ambiguous index instead of a primary key (using theGROUP BY clause)

returns only as many rows as there are unqiue values in the index. The outcome is

an aggregated table with (possibly) fewer rows than the target table. To counteract

this, Proper always adds an additional column in the table during the import ofthe

data that acts as a primary key. For such ambiguous datasets it is now possible to

signalize RELAGGS to either use a specific primary key or the previously mentioned

auto-generated one as an additional column in theGROUP BY clause.

This problem of data loss arises only due to the fact that MySQL is less stricton

the GROUP BY conditions, i.e. that not all columns that appear in theSELECT

clause have to appear either in aggregate functions or in theGROUP BY clause (the

columns of the target table are only listed in theSELECT clause). A behavior that is

not allowed in ANSI SQL, e.g. as implemented in PostgreSQL3.

- Join type. Due to the closed-world-assumption in Prolog data, tables will not neces-

sarily contain full explicit information about the absence of features. In order not to

loose any information during aggregationNATURAL JOIN was replaced byLEFT

3PostgreSQL is freely available from http://www.postgresql.org/.

14

OUTER JOIN . Otherwise the aggregation process could produce an empty result ta-

ble in the worst case.

- Column name ambiguity. The previously sketched behavior for nominal columns,

namely introducing count-columns for each distinct value of such a column, isnot

robust concerning generating names for columns. Since MySQL does not allow e.g.

“-” or “.” in the name of a column the names are transformed, i.e. the invalid charac-

ters are changed into underscores. But here ambiguities can be produced, if one has

nominal values like “value-” and “value.”. They are both transformed into“value ”,

which results in duplicate column names. To resolve this issue the name is now

checked against a hashset whether the same name was already used. Ifthis is the case

underscores are then appended to the name as long as necessary to makeit unique.

The underlying version of the framework for this thesis, i.e. version 0.1.0,supports only

MySQL and is not ANSI SQL compatible4. The computation of the standard deviation for

instance is not part of the ANSI SQL Standard, but a handy extension by MySQL. MySQL

uses the standard deviation for populations (cf. Equation 2.1) and not theone for samples

(cf. Equation 2.2).

S =

√

n
∑

x2
− (

∑

x)2

n2
(2.1)

S =

√

n
∑

x2
− (

∑

x)2

n(n − 1)
(2.2)

Both equations can be rewritten as SQL statements to make them ANSI compliant. Equation
(2.1) then becomes

SELECT sqrt((count(x)*(sum(x*x)) - (sum(x) * sum(x))) / (count(x) * (count(x))))

FROM table

and (2.2) can be written as

SELECT sqrt((count(x)*(sum(x*x)) - (sum(x) * sum(x))) / (count(x) * (count(x) - 1)))

FROM table

wheretable is the table theSELECT is performed on andx is the column to retrieve the

standard deviation from. There is only one problem with these statements: in case that there

are no columns to work on,COUNT returns0 and therefore raises aDivision by zero

Exception.

4Version 0.1.1 moved towards ANSI SQL, additionally supporting PostgreSQL.

15

This “standardization” is necessary for better portability, since different Database systems

either do not offer the computation of the standard deviation or calculate it differently. The

latter happens in case of PostgreSQL, which calculates thesampleand not thepopulation

standard deviation. Due to different implementations results might not be comparable.

2.2.2 Joiner

The central processing algorithm in Proper is theJoiner. Like one can see in Figure 2.1 it

performs the flattening of the arbitrarily nested structure of the relational data into fitting

structures for RELAGGS (maximum depth of 1) and multi-instance learners (one flat table).

The Joiner works in a depth-first manner on tree structures, i.e. with a central table where

all the others are branching off from. It performs joins starting with the leaves until a branch

is completely flattened (for RELAGGS this process is stopped one level above the central

table, the root node). To build up this structure the Joiner can either use theauto-discovery of

the relations between the tables or user-defined relations (how this can be done is discussed

in Section 2.4.1).

In order to keep the IO operations to a minimum, the joins are ordered in such a way that

the small tables are joined first and the largest last. For RELAGGS a future optimization,

mentioned by [Krogel et al., 2003], could be implemented: the propagation ofthe keys of

the tables that are not directly adjacent to the target table5. Instead of executing expensive

joins of whole tables only the necessary key columns would be added to the new table. But

since it might not be possible to change the design of an existing database (i.e. a production

system with accompanied business logic that depends heavily on the current design) and the

complete joins are necessary for MILK and REMILK, these expensive joins were preferred.

The LEFT OUTER join is chosen as join operation in order not to loose any information

(like mentioned in Section 2.2.1 under Modifications/Loss of data). Since classifiers can

handle missing values, the created “NULL” values can be interpreted as missing values.

The columns over which the join is performed are simply the intersection of the indices of

the first table with all the columns of the second one. In case of the East-West-Challenge in

Figure 2.5 with the two tablescar and load there is only one index in thecar table,

the car id . The intersection is then of coursecar id .

If it makes sense for some columns to set the introduced “NULL” values to a specific value

(e.g. replacing them with “0”) then this can also be defined and the columns are updated

5An optional feature implemented in Proper starting with version 0.1.1.

16

after the join.

In case that there are duplicate columns beside the join columns, e.g. due to anasymmetric

relationship like in theAlzheimerdatasets, the second column of such a conflict pair is

prefixed with mX , where X is a unique number for the current join. Without doing this

one would loose a complete branch of data in asymmetric relationships.

To illustrate the functioning of the Joiner we go back to our East-West-Challenge example in

Figure 2.5. For RELAGGS one joins until one has only leaves as children ofthe target table,

which can be seen in Figure 2.8. There is only one child, since the East-West-Challenge has

only a branching factor of 1.

Figure 2.8: East-West-Challenge joined for RELAGGS.

The complete flattening of the database, which is necessary for a multi-instance learner, is

shown in Figure 2.9.

Figure 2.9: East-West-Challenge joined for MI learner.

2.2.3 REMILK

Apart from RELAGGS for creating propositional data and the Joiner forcreating multi-

instance data, the framework contains a third algorithm called REMILK (RElational ag-

gregation enrichment for MILK6, the Multi-InstanceLearningK it). REMILK enriches

the data the Joiner provided for the multi-instance learner by adding the aggregated data

6MILK is freely available from http://www.cs.waikato.ac.nz/ml/milk/.

17

produced by RELAGGS to the multi-instance data. This is done via a join of the tables

generated by RELAGGS and the Joiner, where the columns from RELAGGSare tagged

with a relaggs and the ones from the Joiner withb milk (with this prefixing and a

sorted export to an ARFF file the RELAGGS attributes are presented first tothe classifier).

The resulting table is once again suitable input for a multi-instance learner.

2.3 Export

The last step before the classifiers are built and evaluated, is the export.Here the generated

tables are transferred to ARFF files to make them available for the WEKA workbench or for

MILK. It is possible to exclude certain columns or patterns of columns from being exported,

if they contain implicit knowledge like primary keys of tables (and their aggregates) and also

to sort them by name for convenience. In case of multi-instance data a bag identifier can

be specified explicitly or Proper tries to determine one, based on a heuristic.The heuristic

is quite simple: if there is onlyoneindex in the table, then this is used, otherwise the first

index that does not end withid . If it ends with id it is assumed that it was once

the primary key of a table. Allowing this, one could get the primary key of the target table,

which might not be the bag ID. This would happen in case of theMutagenesisdataset, where

the compound ID is the key for the relations, but due to ambiguity an additional column has

to function as primary key. By skipping indices that look like a primary key Proper can

determine the correct bag ID for theMutagenesisdataset.

“NULL” values that were already in the data or introduced during left outer joins are ex-

ported as missing values. If the ARFF file would become too large it is also possible to

export a stratified sample. Finally WEKA filters can be applied to the data before it is

written to the ARFF file, e.g. for transforming all the nominal attributes into binaryones.

2.4 Tools

The Proper Toolbox contains already a variety of experiments on example datasets, but it

also enables the user to create new ones. In the following several tools willbe presented

that aid the user in creating new experiments.

18

2.4.1 Relations

For exploring the relations in an existing database one can use the toolRelations, shown

in Figure 2.10. With this tool the user can connect to a SQL database server, select a

database and create a relation tree starting with the table that contains the target attribute.

On each node of the tree only those tables are shown that have a relation to the current node,

which makes it very easy to build up a tree. On the other hand, instead of creating the tree

by hand, the user can use the auto-discovery of the relations by specifying the maximum

search depth. But this latter method is only suitable for databases that were imported from a

relational Prolog database or if the branching factor is not too high. Otherwise the tree will

get too big to handle.

Figure 2.10:Relations- tool for exploring the relations in a database. Here a user defined
tree is displayed for anAlzheimerdataset. With themax. Depthoption the user can let
Proper suggest a relation tree that can be edited afterwards.

The built tree can then be used in the Propositionalization tools, e.g. RELAGGS, instead of

discovering the relations automatically. This is useful if only a few tables should be used in

the transformation process. For theEast-West-Challengethis tree is given in Figure 2.11.

The number in parentheses depicts the number of records in this table, whichforms an

ordering used during the process of joining tables as already mentioned in Section 2.2.2.

train_(20)[train_list1_(63)[c_(63)[l_(63)]]]

Figure 2.11: Relation tree for the East-West-Challenge, wherec represents acar and l

the correspondingload .

19

2.4.2 Experiments

All experiments that are shipped with the Toolbox are defined in ANT7 files and therefore

XML 8. Even though XML is human readable it is still cumbersome to create new experi-

ments from scratch by hand (Figure 2.12 shows a snippet of an ANT file).Even though all

tools in Proper provide a command line help, it is still easier to do this with theBuilderuser

interface.

<?xml version="1.0" encoding="UTF-8"?>
<project name="WEKA Proper" default="all" basedir=".">

<!-- last saved: [Sun May 23 16:22:08 NZST 2004] -->
...
<property name="database" value="my_project"/>
<property name="output" value="${proper-dir}/tmp"/>
<property name="datasets" value="${proper-dir}/datasets"/>
...
<!-- default target -->
<target name="all" depends="init, setup, milk, relaggs"/>
<!-- creates the output directory -->
<target name="init">

<mkdir dir="${output}"/>
</target>
<target name="setup" depends="setup/database, setup/import"/>
<target name="setup/database">

<java classname="proper.app.Databases" fork="yes" maxmemory="${memory}">
...

Figure 2.12: Excerpt of an ANT file generated with theBuilder (the “...” denotes omis-
sions).

With this front-end the user can define properties of the experiment, like nameof the project

or the database, as well as what kind of files to import (Prolog or CSV) andhow to propo-

sitionalize. The above mentionedRelationstool is also part of theBuilder (for a screenshot

see page 94), which makes it easy to determine what tables should be propositionalized.

TheBuilder is not only able to create ANT files that are executable, but also to open them

again for modifications.

In order to run the experiments the user can either run them directly from thecommand line

with ANT or use theRunGUI component (cf. Appendix B.1 page 94 for a screenshot).

Either experiments created by theBuilder or the default ANT files of the Proper Toolbox

can be executed here.

After loading an ANT file one can choose which target to execute, where the output of the

experiments is redirected to the GUI. In case of an unsuccessful execution a dialog pops up

7ANT is the “make” for Java. The user can define different targets justlike in Makefiles, but dependencies
have to be stated explicitly, which increases the readability.

8XML is a simplified version of SGML (ISO 8879), theStandard GeneralizedMarkup Language
used for information processing. Further information can be found atthe World Wide Web Consortium,
http://www.w3.org/XML/.

20

Figure 2.13:Builder - enables the user to build arbitrary experiments.

and lists the erroneous targets.

Builder andRuncan be used in turn to set up a new experiment: changing parameters with

Builder and then testing them withRun. Appendix B.2 contains a guided example of how

to use these tools with the East-West-Challenge dataset.

2.4.3 Viewing ARFF files

Another handy tool is theArffViewer(see Figure 2.14). It displays the content of an ARFF

file in tabular form, which enhances the readability significantly. Each column contains the

name of the attribute and its type in the header. The class attribute is highlighted in bold

font. Despite the name of the tool one can also edit files with it, i.e. changing values of an

instance, deleting instances or attributes, sorting the instances based on anattribute. It is

also possible to set missing values to a new definite value or to change one specific value

of an attribute to another one. For nominal values theArffViewerprovides a dropdown list

with all the possible values. It therefore presents an easy way of creating modified copies

of a dataset.

2.4.4 Distributed Experiments

Architecture

When performing the first experiments with Proper it became clear that the sequential ex-

ecution of steps on a single machine would be far too slow. Instead of havingone ANT

file with all the experiments that are executed one after the other it is also possible to use

21

Figure 2.14:ArffViewer- for viewing and editing ARFF files.

a Client-Server-System for running these Java calls (later on only referred to as “jobs”). In

Figure 2.15 a general overview is given: a centralJobServermanages the jobs and sends

them toJobClientsthat are available for execution. The current system is using a multi-

threading approach where server and client communicate via XML messages. As soon as

a message is received a thread is instantiated that handles the request from then on, the

application is immediately going back into listen-mode, waiting for the next request.This

approach ensures that no timeouts happen and no messages have to be re-sent due to failure.

Figure 2.15: Basic overview of the Client-Server-Architecture.

Even though the class diagrams in Appendix A.2 on page 85 show both theJobServerand

the JobClientas Server-Classes, only theJobServeracts as such. This design originates

in the fact that both, the server and the client, are listening for messages and in order to

process them efficiently they use multi-threading. It is necessary for the client to accept

other messages while processing a job, since the server is checking in regular intervals

22

whether the clients are still alive by sendingIsAlive -Messages. If the client is not

responding anymore then the server knows that someting went wrong with that client, e.g.

anOutOfMemory-Exception or a System-Failure, and can remove it from the list of active

clients. With a non-multi-threading client the server would wait forever for such a client.

A timeout approach is also not suitable here, since some experiments may take days to

complete, depending on the amount of data and the type of classifier being used, and a fixed

timeout value would make the server discard a still running client.

For managing the clients the server is maintaining twoClientLists (cf. page 85): one

with idle clients (clients) and another one with clients that are currently processing a

job (pending). Since aClientList can also contain a job, we can record which jobs

succeeded, failed, are still being processed, or yet to do. Failed jobs can be easily re-run,

using this log as input for theJobServeragain.

Figure 2.16: Example run of the distributed experiments.

In Figure 2.16 the sequence of actions taking place during a run is depicted. First the

user starts theJobServer, which loads the jobs into its queue. After that theJobClientis

started, registering itself with the server. At regular intervals theJobDistributor(a special

purpose thread of theJobServer) tries to distribute jobs to idle clients. Before the job is

sent to the client, it is added to thepending list. As soon as the client receives the job

it instantiates aJobClientProcessor object that executes the job and the client goes

23

back to listen mode, while the other thread processes the job. After finishing the execution,

either successfully or not, the generated output is sent back to the server and stored there

in a global log file. Then the job is removed from the pending list. Once no more jobs

are awaiting execution and also all pending ones finished, the server sends a shutdown

message to all clients before terminating itself.

The messages that are sent between the server and the clients are basedon XML, since

this poses the most flexible way. The Appendix A.2 (on page 87) shows the different class

diagrams and Table 2.1 states the DTD of these messages with a correspondingexample.

Type DTD Example Message
Message <!ELEMENT message (head, body)> <?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT head (from, type)> <message>
<!ELEMENT from (ip, port)> <head>
<!ELEMENT ip (#PCDATA)> <from>
<!ELEMENT port (#PCDATA)> <ip>192.168.0.1</ip>
<!ELEMENT typ (#PCDATA)> <port>31415</port>
<!ELEMENT body (#PCDATA)> </from>

<type>register</type>
</head>
<body/>

</message>
DataMessage

<!ELEMENT body (data)> <body>
<!ELEMENT data (line*)> <data>
<!ELEMENT line (#PCDATA)> <line>MIWrapper with base classifier:</line>

<line>J48 pruned tree</line>
<line>---------------</line>
...

FileMessage
<!ELEMENT body (data)> <body>
<!ELEMENT data (filename, line*)> <data>
<!ELEMENT filename (#PCDATA)> <filename>eastwest.arff</filename>
<!ELEMENT line (#PCDATA)> <line>@relation eastwest-Proper 0.1.0</line>

...
JobMessage

<!ELEMENT body (job)> <body>
<!ELEMENT job (status, run, additional)> <job>
<!ELEMENT status (#PCDATA)> <status>failed</status>
<!ELEMENT job (#PCDATA)> <run>proper.app.Experimenter -class...</run>
<!ELEMENT additional (run*)> <additional/>

...

Table 2.1: DTDs and examples of messages sent betweenJobServerandJobClient(s).

It is obvious that not all kinds of jobs are parallelizable, that for certain types the ordering

is important, e.g. the import of the data has to be finished before the propositionalization

takes place. To ensure the order of execution, it is possible to insert so-calledsynchroniza-

tion pseudo-jobs. The effect of such a pseudo-job is that theJobDistributorwaits until all

pending jobs are completed before new jobs are sent to the clients again (see Figure 2.17,

“Simple” scheme).

An extension to thissimple schemeis that dependencies for jobs can be defined: for jobs

that depend on each other one puts them in a list in the order they need to be executed, e.g.

import before relaggs . If jobs are independent then the list contains only one element.

The result is a number of dependency lists like shown in Figure 2.17. Thepending list is

now no more a sequential list, but for each dependency list there exists a corresponding slot

24

Simple Extended
import: alzheimer alzheimer: import -> relaggs -> export -> evaluate
import: eastwest eastwest: import -> relaggs -> export -> evaluate
synchronize musk1: evalute
relaggs: alzheimer ...
relaggs: eastwest
synchronize
export: alzheimer
export: eastwest
synchronize
evaluate: alzheimer
evaluate: eastwest
evaluate: musk1
...

Figure 2.17: Simple and extended synchronization scheme.

for taking in a job. Figure 2.18 displays these lists. The functionality is best referred to as

a “dripping apparatus” where the single “drops” resemble the jobs and thenext “drop” can

only fall if there is no other “drop” occupying the slot. The server now checks in regular

intervals whether there are any free slots and still “drops” available. If that is the case the

next “drop” falls into place, i.e. a new job is sent to a free machine for execution. This way

of parallelizing jobs guarantees better efficiency, since all jobs that can be distributed will

actually be distributed.

Figure 2.18: Visualization of the extended synchronization scheme as “dripping apparatus”.

25

Generating Jobs

The current format of the input for theJobServeris just a plain text file where each line

contains the class name to execute and the corresponding parameters, in short, like invoking

the class from the command line. TheJobberrepresents a convenient way to extract these

calls from existing ANT files (either the default ANT files or ones created withthe Builder)

to create such a jobfile.

In the GUI (cf. Figure 2.19) one can load the specific ANT files to create jobs from. The

user can then decide which targets to run in which order and also insert synchronization

points where necessary. Sometimes it is necessary to override the properties given in the

ANT files with other values, e.g. if a different classifier is to be used and theoutput should

be saved in a different directory, then this can be done on theProperties tab. The current

configuration for generating the jobs can be saved in an XML file and if it is reopened then

all the necessary ANT files are loaded automatically.

Finally the generated jobfile can be edited in the user interface, if necessary (deleting jobs,

changing parameters).

Figure 2.19: Screenshot of theJobberfront-end.

Execution

The execution of the experiments is pretty straightforward: starting the server with the pre-

viously generated jobfile and then subsequently starting the clients. With Unix derivatives

it is possible to automate the start up of the clients by using SSH agent9. The SSH agent

provides a passwordless login on remote machines, which is very useful ifone has to do

9Documentation on the SSH agent can be found at http://mah.everybody.org/docs/ssh.

26

many logins. For that reason a few shell scripts were implemented that can start and stop

clients that are listed in a plain text file.

The scripts perform the following steps for each host listed in that file:

- connect tohostvia ssh

- starting a “niced”JobClientwith nohup in order to keep it running after logging out

again

TheJobMonitor(cf. page 95 in Appendix B.1) provides a GUI front-end for the command

line basedJobServerandJobClients. With this tool it is possible to read the job queue of

theJobServer, delete certain jobs, shutdown the server or clients. It is also possible to add

new jobs to the queue, e.g. ones that failed and have to be re-run.

Figure 2.20: Interaction of theJobMonitorwith theJobServerandJobClients.

After the execution the generated logfiles can be processed with other scripts that generate

CSV files and LATEX-tables. The CSV files can be further processed by Microsoft Excel

templates mentioned in the appendix on page 120.

27

Chapter 3

Related Work

The approaches to propositionalization or generation of multi-instance shown so far are just

a tiny fraction of the algorithms available. In this section a few more will be presented and

discussed whether they can be integrated in the Proper framework, if this did not already

happen.

3.1 MIWrapper

The multi-instance learner MIWrapper used throughout the experiments is not a special-

purpose algorithm, but a meta-scheme for multi-instance learning. It is a wrapper around

standard propositional learner as described in [Frank & Xu, 2003]. Asketch of the algorithm

as outlined in the mentioned paper will be presented and an example where this approach

should have an advantage over the aggregations generated by RELAGGS.

In multi-instance learning each example is a bag of instances, but only the baghas a class la-

bel. The MIWrapper approach assigns each instance of then instances in the bag a weight

proportional to1/n. By weighting each instance one gets a learner that is not biased to

certain examples (ones with more instances), since all the bags have the sameweight re-

gardless of the number of instances they contain. For predicting a bag label every instance

is run through the built model to obtain the class probability. The average of these proba-

bilities is taken to determine the class label, since all instances are assumed to be equally

weighted.

The advantage of this approach in contrast to RELAGGS becomes obviousif the data looks

like in Figure 3.1. Here are two classes that are basically mirror images of each other,

resulting in the aggregates to cancel out each other. The MIWrapper on the other hand is

able to derive a useful decision tree from the data, as can be seen in Table 3.1.

29

Figure 3.1: Artificial Dataset.

MIWrapper RELAGGS
x < 0
| y < 0 : pos (4/0)
| y >= 0 : neg (4/0) : neg (4/2)
x >= 0
| y < 0 : neg (4/0)
| y >= 0 : pos (4/0)

Table 3.1: Unpruned decision trees for the artificial dataset, containing 4 bags with 4 in-
stances each.

3.2 RSD

In contrast to the database-oriented approach written in Java, RSD (RelationalSubgroup

Discovery) by FilipŽelezńy is implemented in Yap Prolog1. A short introduction will be

given on how RSD works, based on [Železńy et al., 2003].

RSD takes an inductive Prolog database as input plus an additional mode-language def-

inition. The constraints given with the mode-language define not only the language of

subgroup descriptions, but also enable a more efficient induction and focus the search for

patterns (thus avoiding the combinatorial explosion mentioned in Section 1.1).

1. Identify features. Here all first-order conjunctions are identified that form a legal

feature definition, i.e. they are composed of one or more structural predicates intro-

ducing a new variable and of utility predicates that consume all new variables. These

features do not contain any constants and can be constructed independently of the

input data.

An example for a structural predicate is:-modeb(1,hasCar(+train,-car)),

where themodebdenotes that the binary predicatehasCar may be used in thebody

of the clause. The “1” is the maximum number of cars the feature can address of a

given train. ‘+’ stands for an input and ‘-’ for an output variable.

1RSD is freely available from http://labe.felk.cvut.cz/∼zelezny/rsd. A link for Yap Prolog is also provided
there.

30

2. Employ constants. In this step the set of features is extended by variable instantia-

tions, where several copies of each feature are instantiated with different constants.

Irrelevant features are detected and removed.

3. Produce relational table. The rule induction algorithm, a modified CN2 [Clark &

Nibbet, 1989], takes these generated features as input. After creating an appropri-

ate set of features it is possible to generate a single relational table representing the

original data. Output for propositional learners can be produced (e.g. for WEKA).

Due to the constraints that need to be specified, RSD is currently not integrated into the

framework. Still, the generated tables could be post-processed in Proper. By enabling the

user to define constraints, the integration could be tighter: the tables in the database could

be exported together with the contraints and fed into a Prolog engine that thenruns the RSD

engine. The output could again be post-processed and used further inProper.

3.3 SINUS

The SINUS2 system developed by Simon Rawles is also Prolog-based and was originally

based on LINUS the transformational ILP learner by Lavrač and Ďzeroski (cf. [Lavrǎc &

Džeroski, 1994]). The following outline of the propositionalization processis taken from

[Krogel et al., 2003] and limited to the steps that are of interest here. The reader may refer

to the previously mentioned paper for more information.

- Input declarations. SINUS needs the declaration of all the predicates used for ground

facts and background knowledge, the cardinality of the relationships between the

predicates and the arguments of the predicates. The relationtrain-car is defined like

this: train2car 2 1:train *:#car * cwa . Here “1” and “*” denotes the

cardinality (“one-to-many”), “#” defines an output argument (otherwise it is an input

argument) and since there are two arguments,train and car , this is denoted by

“2”. “* cwa” is only of historical relevance (used in the PRD files used in LINUS to

define the hypotheses language).

- Feature generation. First-order features are constructed recursively, which function

as input to the propositional learner.

2SINUS is freely available from http://www.cs.bris.ac.uk/home/rawles/sinus/.

31

- Feature reduction. Irrelevant and low quality features, according to a quality measure,

are removed.

- Propositionalization. A table containing the propositional data is constructed and can

then be output to a file on which a propositional learner may work.

From this brief sketch it is easy to see that SINUS is relatively easy to integrate into the

framework. There are basically three steps: the first is to export the relational data to a

fitting input format, where each table represents a predicate. The cardinality of the rela-

tionships can be easily determined by counting and comparing the keys of tables that are

related. Secondly a Prolog engine is invoked to run SINUS with the given data and then to

output the propositional data. Finally the output from SINUS could be post-processed in

the framework again.

3.4 Stochastic Discrimination

Another approach to propositionalization is based on stochastic discriminationas developed

by [Kleinberg, 2003]. The application to Machine Learning given in [Pfahringer & Holmes,

2003] will be outlined shortly here. In stochastic discrimination normally thousands of fea-

tures are generatedalmostat random and then during prediction the class with the highest

vote over all examples (by using equal-vote) is predicted. The features are only generated

almostat random since only features that cover more examples than the default percentage

for the class are used. But to achieve a good generalization it has also to be ensured that

each training example of a class is covered by about the same number of features, even

though this may not always be possible in practice.

Figure 3.2: Chemical fragmentC-C=C

This method can be used for generating propositional features from structural data, e.g.

chemical domains like mutagenicity or carcinogenicity, where we have labeled graphs. But

instead of generating random sub-graphs the search is guided by focus examples (an idea

borrowed from Progol [Muggleton, 1995]), i.e. to extend a feature only literals which are

32

true for this focus example are used. For each class a user defined number of examples are

chosen with a coverage that is below average. A randomized list of all the edges of the graph

is generated in such a manner that all but the first entry are connected to at least one prior

entry in the list. Every prefix of this list is therefore a connected sub-graph of the example.

Finally every sub-graph is either checked whether it appears in every graph or the number

of unique instances of the sub-graph in each graph is counted. According to the result of

the previously mentioned paper, the latter setting produces better results.

Stochastic discrimination could be integrated into the Proper framework, sinceit is theo-

retically possible to decompose the sub-graphs into SQL statements and pose these queries

to the database. The user only has to define relations between tables that are relevant for

discovery, e.g. the atom-bond-atom relation. From this relation-fragment itis possible to

generate graphs that can be represented as SQL statements. E.g. the fragment in Figure 3.2

could be written as the statement in Figure 3.3, which is depicted in Figure 3.4. But even

though the search in the database could be optimized by introducing indices, there is still

a huge number of join operations necessary, which makes it infeasible forlonger or more

branched fragments.

select
count(distinct a1.atom id)

from
atom a1, atom a2, atom a3, atom a4, bond b1, bond b2, bond b3, bond b4

where
a1.atom type = ’c’

and a1.bondid = b1.bond id

and b1.bond type = ’-’ and b1.split id = b2.split id

and a2.atom type = ’c’
and a3.atom id = a2.atom id and a2.bond id = b2.bondid and a3.bond id = b3.bond id

and b3.bond type = ’=’ and b3.split id = b4.split id

and a4.atom type = ’c’
and a4.bond id = b4.bond id

Figure 3.3: Chemical fragment as SQL query.

33

Figure 3.4: Graphical representation of the SQL query - thebond predicate is split into two,
since it contains twoatoms (thesplit id identifies the entries that belong together). The
grey boxes depict the building blocks for longer and branched fragments

34

Chapter 4

Experiments

This chapter will show the feasibility of the presented approach to propositionalization and

generation of multi-instance data.1 For this purpose several well-known benchmark datasets

will be used. First the different datasets will be introduced and what kindof settings are used

for the experiments. Afterwards the results will be presented and discussed in detail.

4.1 Datasets and Settings

For the experiments the following well-known benchmark datasets2 were used (the particu-

lar names of the datasets used in the tables and figures are also mentioned):

- Alzheimer’s disease. These are actually four related problems trying to predict low

toxicity, high acetocholinesterase inhibition, good reversal of scopolamineinduced

deficiency, and inhibit amine re-uptake:3

alzheimertoxic, alzheimercholine, alzheimerscopolamine, alzheimeramineuptake

- Drug-data design. These are the well-known pyrimidine and triazine datasets, exam-

ples of the so-called Qualitative Structure Activity Relationship (QSAR) approach to

the prediction of drug properties:3

dd pyrimidines, ddtriazines

- East-West-Challenge. The well-known trains dataset:

eastwest

- Genes. From the original KDD Cup 2001 data four datasets were created: one for

predicting the function of a gene (without the localization information), another one

1For the experiments version 0.1.0 of the framework was used.
2The web resources for the datasets can be found in Appendix C.

35

with the localization of a gene as class. From these two non-binary datasets two bina-

rized versions were created (cf. [Krogel et al., 2003]): whether a gene is responsible

for a protein that is responsible for “cell growth, cell division and DNA synthesis” is

one, and the other one whether the localization of the produced gene is the nucleus or

not:

genesgrowth, genesgrowth bin, genesnucleus, genesnucleusbin

- Musk 1/2. Instead of using one flattened table, a target table, containing only the bag-

ID and the class, and a data table, containing the rest of the attributes, wereextracted:

musk1rel, musk2rel

- Mutagenesis. Three different approaches were used to turn the mutagenesis data into

a multi-instance representation: bags either contain a) all atoms of a compound, or b)

all atom-bond tuples of a compound, or c) all adjacent pairs of bounds ofa compound:

mutagenesis3atoms, mutagenesis3bonds, mutagenesis3chains

- Secondary structure of proteins. The task is to predict whether a position in a protein

is in an alpha-helix or not:3

proteins

- Suramin analogues. Based on the atomic structure and bond relationships the task is

to predict a compound being active or inactive as anti-cancer agent:

suramin

- Thrombosis. The thrombosis prediction task from the PKDD2001 Discovery Chal-

lenge:

thrombosis

After importing the datasets and generating propositional and multi-instance data from

the relational model, one gets the figures shown in Table 4.1. There one finds a detailed

overview about the number of classes, the number of attributes that were produced (includ-

ing the class attribute and in case of multi-instance the bag attribute), the number of records

in the result table and how many instances and bags respectively this represents. Since the

number of attributes varies depending on the type of post-processing, theoutcome of the

different settings, one with and the other ones without post-processing,are given.

3Note: The data generated by the Joiner is actually propositional and not multi-instance in these cases (see
Table 4.1).

36

Dataset Classes Attr. (Sett. 1) Attr. (Sett. 2-6) Records Inst./Bags/Bags
alzheimeramineuptake 2/2/2 237/62/298 237/40/276 686/686/686 686/686/686
alzheimercholine 2/2/2 251/70/320 251/40/290 1326/1326/1326 1326/1326/1326
alzheimerscopolamine 2/2/2 237/60/296 237/40/276 642/642/642 642/642/642
alzheimertoxic 2/2/2 251/70/320 251/40/290 886/886/886 886/886/886
dd pyrimidines 2/2/2 95/90/184 95/8/102 1762/1762/1762 1762/1762/1762
dd triazines 2/2/2 125/118/242 125/10/134 23650/23650/23650 23650/23650/23650
eastwest 2/2/2 66/26/91 66/11/76 20/213/213 20/20/20
genesgrowth 13/13/13 27/49/138 27/12/40 4346/14238/14238 4346/4346/4346
genesgrowth bin 2/2/2 27/49/138 27/12/40 4346/14238/14238 4346/4346/4346
genesnucleus 15/15/15 27/49/134 27/12/40 4346/14238/14238 4346/4346/4346
genesnucleusbin 2/2/2 28/49/134 28/12/40 4346/14238/14238 4346/4346/4346
musk1rel 2/2/2 1661/168/1828 1661/168/1828 92/476/476 92/92/92
musk2rel 2/2/2 1661/168/1828 1661/168/1828 102/6598/6598 102/102/102
mutagenesis3atoms 2/2/2 26/12/37 26/5/30 188/1618/1618 188/188/188
mutagenesis3bonds 2/2/2 56/18/73 56/9/64 188/3995/3995 188/188/188
mutagenesis3chains 2/2/2 88/26/113 88/13/100 188/5349/5349 188/188/188
proteins 2/2/2 22/22/43 22/3/24 1612/1612/1612 1612/1612/1612
suramin 2/2/2 151/22/172 151/9/159 11/2378/2378 11/11/11
thrombosis 4/4/4 293/91/394 293/65/357 770/86452/86452 770/770/770

Table 4.1: Overview of the produced data, where each column shows the values for
RELAGGS/Joiner/REMILK.

Setting Classifier Parameter Nominal Attributes Missing Values
1 unpruned REPTree, -P -M 0, NominalToTrueBinary for binarized attr.

for genes* LogitBoost/DecisionStump for genes*: default replaced by “0”
2 LogitBoost/DecisionStump default/default - -
3 unpruned REPTree -P -M 0 - -
4 LogitBoost/unpr. REPTree max depth 1 default/-P -M 0 -L 1 - -
5 LogitBoost/unpr. REPTree max depth 3 default/-P -M 0 -L 3 - -
6 AdaBoostM1/pruned J48 default/default - -

Table 4.2: Settings for the experiments. In case of multi-instance data the MIWrapper was
used with default parameters.

Attribute NominalToBinary NominalToTrueBinary
att att att=a att=b
a 1 1 0
b 0 0 1
? 0 0 0

Table 4.3: Different behavior of the originalNominalToBinaryfilter and the modified ver-
sion, if nominal attribute contains only two distinct values (“att” is the name of the example
attribute). Missing values are replaced with “0”.

37

Based on this data several settings of experiments are executed as listed in Table 4.2. All

the experiments were run on Intel Pentium 4 machines with 2.60GHz and 512MBof RAM,

where the Java Virtual Machine (JVM) was limited to 1.2GB of heap size (missingentries

in the tables and figures, denoted by “-” or missing bar, mean that the JVM runs out of

memory).

The following learning schemes (in alphabetical order) were used:

- AdaboostM1. A standard boosting algorithm by [Freund & Schapire, 1996].

- DecisionStump. 1-level decision tree with a binary split and a separate branch for

missing values.

- J48. The Java implementation of Quinlan’s C4.5 (cf. [Quinlan, 1993]).

- LogitBoost. Performs boosting based on additive logistic regression [Friedman et al.,

1998].

- REPTree. An unpruned REPTree is a decision tree built with info gain.

In all experiments 10 runs of 10-fold stratified cross-validation was used, only oneastwest

andsuraminLeave-One-Out was employed, due to the small amount of instances or bags

respectively.

For turning nominal attributes into “binary” ones, a modified version of theNominalToBi-

nary Weka filter was used. This filter creates a new attribute for each distinct value of a

nominal attribute, whereas the original filter does this only for nominal attributes that have

more than two distinct values, otherwise the attribute is thought to be already binary. Ta-

ble 4.3 shows the different outcome of the original and the modified filter if theyencounter

an attribute with only two distinct values.

Here one can simulate the closed-world-assumption of imported Prolog data, by setting

the missing values to “0”: if a feature is not explicitly mentioned then it is notmissing

(“NULL”), but not existing(“0”).

38

4.2 Results

The following sections discuss the previously introduced experiment settings in detail, the

intention of each setting and the outcome.

4.2.1 Setting 1

For a fair comparison (cf. Figure 4.1 and Table 4.4) between the different algorithms an

unpruned decision tree was chosen. Not J48, since it still performs somepre-pruning, but

REPTree. Pruning was not used, because it is sensitive to the absolute value of each in-

stance’s weight, an effect that makes it harder to provide a fair comparison. For a simulation

(at least on single-instance data) of the RELAGGS “count” (CNT VAL column) of nom-

inal attributes in adjacent tables theNominalToTrueBinaryfilter was used in combination

with replacing all missing values in such binarized columns with “0”. It is only possible to

simulate this behavior to a certain degree: no aggregation takes place in the target table and

therefore RELAGGS does not perform any binarization there. The filteron the other hand

still transforms every nominal attribute.

Due to the method of dealing with missing values using fractional instances [Quinlan,

1993], the unpruned decision tree literally “explodes” for data with nominalattributes that

contain lots of missing values (because REPTree generates a copy of an instance with a

missing value for each branch, and does so simultaneously for each branch). This happened

in case of thegenes* datasets, where it was not possible to create a tree that fitted into

memory. In this case the ensemble LogitBoost/DecisionStump was used, to get any results.

Apart from theAlzheimer, thegenesnucleus* and thethrombosisdatasets, the three ap-

proaches perform more or less equal. The difference in case of theAlzheimersingle-instance

datasets between the RELAGGS and Joiner data is due to missing values, whichis discussed

in detail in Section 4.3. In Setting 2 a different outcome can be seen for thegenesnucleus*

datasets. In other experiments, where the attributes were ordered in sucha way that first the

Joiner ones and then the RELAGGS ones appeared, it was hypothesizedthat the order af-

fected the learner. Since the order is now reversed, first RELAGGS and then Joiner, and the

outcome is still unchanged, this can be ruled out. The differences in theeastwestand the

suramindatasets are not of such importance due to the high standard deviation of 40–50%

(which holds true for all the following settings).

39

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e

alz
he

im
er

_c
ho

lin
e

alz
he

im
er

_s
co

po
lam

ine

alz
he

im
er

_t
ox

ic

dd
_p

yri
m

idi
ne

s

dd
_tr

iaz
ine

s

ea
stw

es
t

ge
ne

s_
gr

ow
th

ge
ne

s_
gr

ow
th

_b
in

ge
ne

s_
nu

cle
us

ge
ne

s_
nu

cle
us

_b
in

mus
k1

_r
el

mus
k2

_r
el

mut
ag

en
es

is3
_a

tom
s

mut
ag

en
es

is3
_b

on
ds

mut
ag

en
es

is3
_c

ha
ins

pr
ot

ein
s

su
ra

m
in

thr
om

bo
sis

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

REMILK

Figure 4.1: Comparison for Setting 1.

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 87.53 ± 4.04 73.53 ± 5.26 87.59 ± 3.91
alzheimercholine 89.05 ± 2.79 79.19 ± 3.98 89.04 ± 2.74
alzheimerscopolamine 87.86 ± 4.37 73.92 ± 4.77 87.87 ± 4.32
alzheimertoxic 92.75 ± 2.90 88.56 ± 3.53 92.72 ± 2.92
dd pyrimidines 92.41 ± 2.17 92.38 ± 2.15 92.41 ± 2.17
dd triazines 74.75 ± 0.84 74.75 ± 0.84 74.76 ± 0.84
eastwest 80.00 ± 41.03 55.00 ± 51.04 75.00 ± 44.42
genesgrowth 31.69 ± 1.55 34.00 ± 1.15 33.47 ± 1.20
genesgrowth bin 84.26 ± 0.42 84.36 ± 0.24 84.36 ± 0.37
genesnucleus 76.18 ± 2.09 57.22 ± 2.32 62.78 ± 2.15
genesnucleusbin 87.20 ± 1.43 - 78.54 ± 1.71
musk1rel 80.13 ± 15.21 81.64 ± 14.68 79.40 ± 14.54
musk2rel 72.83 ± 13.44 76.82 ± 12.61 74.40 ± 13.73
mutagenesis3atoms 79.58 ± 8.90 82.72 ± 8.24 80.46 ± 9.15
mutagenesis3bonds 85.38 ± 7.85 83.04 ± 7.74 86.84 ± 7.11
mutagenesis3chains 85.31 ± 7.83 83.74 ± 7.98 85.40 ± 8.66
proteins 59.52 ± 4.08 59.52 ± 4.08 59.50 ± 3.94
suramin 54.54 ± 52.22 63.63 ± 50.45 54.54 ± 52.22
thrombosis 96.67 ± 1.45 87.39 ± 2.87 -

Table 4.4: Accuracy and standard deviation for Setting 1.

40

4.2.2 Setting 2

Setting 2 uses an ensemble consisting of LogitBoost and DecisionStump, both with default

settings (i.e. 10 iterations for the boosting algorithm). The results can be found in Figure 4.2

and Table 4.5. In contrast to Setting 1 no post-processing of nominal values took place,

since the DecisionStump handles missing values differently. It treats the missingvalues as

another value, whereas decision trees like REPTree treat them as unknown.

With this setting there are basically no differences in the result for the different approaches,

only on themutagenesis3* datasets where the MIWrapper produces worse results.

Comparing the results for thegenesnucleus* datasets with the ones from the previous

setting (binarization of nominal attributes and replacing missing values) now allthree ap-

proaches perform equally well. This dataset is apparently sensitive to binarization and/or

replacing missing values.

The thrombosisdatatset, in case of the Joiner data, also profits from the different handling

of missing values. This dataset contains a lot of missing values, especially in the nominal

attributes. By treating these as a separate value, one gets a nearly perfect representation

(above 99% and standard deviation of less than 1%). That the combination of the two

datasets (REMILK) does not fit into memory is not surprising due to the fact,that the

dataset has 357 attributes and 86,452 instances, resulting in a matrix with 30,863,364 cells.

musk1rel is a dataset where the Joiner has a slight advantage compared to the other two

approaches, even though this dataset contains no missing values at all. The aggregation

apparently loses some important information crucial to the predictive power.

41

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e

alz
he

im
er

_c
ho

lin
e

alz
he

im
er

_s
co

po
lam

ine

alz
he

im
er

_t
ox

ic

dd
_p

yri
m

idi
ne

s

dd
_tr

iaz
ine

s

ea
stw

es
t

ge
ne

s_
gr

ow
th

ge
ne

s_
gr

ow
th

_b
in

ge
ne

s_
nu

cle
us

ge
ne

s_
nu

cle
us

_b
in

mus
k1

_r
el

mus
k2

_r
el

mut
ag

en
es

is3
_a

tom
s

mut
ag

en
es

is3
_b

on
ds

mut
ag

en
es

is3
_c

ha
ins

pr
ot

ein
s

su
ra

m
in

thr
om

bo
sis

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

REMILK

Figure 4.2: Comparison for Setting 2.

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 84.46 ± 3.86 85.43 ± 3.75 85.93 ± 4.38
alzheimercholine 77.93 ± 3.28 76.59 ± 3.17 76.59 ± 3.17
alzheimerscopolamine 73.47 ± 5.40 74.83 ± 5.18 74.26 ± 5.33
alzheimertoxic 79.90 ± 3.67 80.33 ± 4.29 81.67 ± 3.60
dd pyrimidines 83.12 ± 2.92 83.14 ± 2.96 83.12 ± 2.92
dd triazines 66.15 ± 1.14 66.27 ± 1.72 66.27 ± 1.72
eastwest 75.00 ± 44.42 60.00 ± 50.26 80.00 ± 41.03
genesgrowth 31.69 ± 1.55 32.18 ± 1.44 31.53 ± 1.48
genesgrowth bin 84.26 ± 0.42 84.13 ± 0.51 84.34 ± 0.58
genesnucleus 76.18 ± 2.09 74.75 ± 2.00 76.67 ± 1.94
genesnucleusbin 87.20 ± 1.43 86.44 ± 1.26 87.30 ± 1.30
musk1rel 77.98 ± 15.10 81.67 ± 13.83 77.30 ± 14.93
musk2rel 78.56 ± 12.66 78.90 ± 12.20 78.66 ± 12.71
mutagenesis3atoms 76.48 ± 9.07 67.02 ± 3.05 76.67 ± 9.44
mutagenesis3bonds 84.28 ± 8.36 72.87 ± 6.80 83.93 ± 7.31
mutagenesis3chains 85.21 ± 8.25 73.02 ± 8.90 84.40 ± 8.64
proteins 59.82 ± 3.50 60.29 ± 3.67 59.86 ± 2.80
suramin 54.54 ± 52.22 63.63 ± 50.45 54.54 ± 52.22
thrombosis 97.38 ± 1.38 99.33 ± 0.85 -

Table 4.5: Accuracy and standard deviation for Setting 2.

42

4.2.3 Setting 3

Like in Setting 1 this setting uses again an unpruned REPTree. But this time no transform-

ing of nominal attributes and no replacing of missing values takes place (cf. Figure 4.3 and

Table 4.6). The purpose of this setting is to explore the possible effects of the Nominal-

ToTrueBinaryfilter and the replacing of missing values with “0”.

Of course, problems arise from the use of an unpruned decision tree in case of larger

datasets, likegenes* and thrombosis. Even after removing all the nominal values with

a lot of missing values from thegenes* the JVM runs out of memory working on the

Joiner/REMILK data. Thethrombosisdataset with its 80,000+ instances also contains

many nominal attributes with a high percentage of missing values, resulting in JVMcrashes

because of insufficient memory (i.e. JVM heap size). That the single-instance datasets

Alzheimerwith their limited number of instances (around 1000) do not produce any results

for the Joiner data can only be explained with the huge amount of missing values most of

the attributes have.

Table 4.7 shows what percentage of attributes in a dataset have at least agiven percentage

of missing values, e.g. in thealzheimertoxicdataset 81.82% of the nominal attributes have

a missing value portion of more than 75%. The datasets shown in that table weregenerated

with the Joiner.

Thesuramindataset also runs out of memory in case of the Joiner data, which is apparently

linked to the fact that of the 9 attributes (including the class), 5 have 53% of missing values.

Especially one nominal attribute, the atom identifier, has more than 1100 distinctvalues.

A surprising finding is the significant increase for the multi-instance data in thedd triazines

dataset (standard deviation is only around 0.5%), whereasdd pyrimidinessuffers compared

to Setting 1. Since there are no missing values in these datasets, the reason for this must lie

in the binarization of the nominal attributes with theNominalToTrueBinaryfilter.

43

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e

alz
he

im
er

_c
ho

lin
e

alz
he

im
er

_s
co

po
lam

ine

alz
he

im
er

_t
ox

ic

dd
_p

yri
m

idi
ne

s

dd
_tr

iaz
ine

s

ea
stw

es
t

mus
k1

_r
el

mus
k2

_r
el

mut
ag

en
es

is3
_a

tom
s

mut
ag

en
es

is3
_b

on
ds

mut
ag

en
es

is3
_c

ha
ins

pr
ot

ein
s

su
ra

m
in

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

REMILK

Figure 4.3: Comparison for Setting 3.

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 87.53 ± 4.04 - 86.07 ± 4.10
alzheimercholine 89.05 ± 2.79 - 88.66 ± 2.89
alzheimerscopolamine 87.86 ± 4.37 - 87.66 ± 4.47
alzheimertoxic 92.75 ± 2.90 - 91.16 ± 2.91
dd pyrimidines 92.41 ± 2.17 86.92 ± 2.25 86.92 ± 2.21
dd triazines 74.75 ± 0.84 82.20 ± 0.58 82.41 ± 0.57
eastwest 80.00 ± 41.03 40.00 ± 50.26 70.00 ± 47.01
musk1rel 80.13 ± 15.21 81.64 ± 14.68 79.40 ± 14.54
musk2rel 72.83 ± 13.44 76.82 ± 12.61 74.40 ± 13.73
mutagenesis3atoms 79.58 ± 8.90 82.61 ± 8.03 80.46 ± 9.15
mutagenesis3bonds 85.38 ± 7.85 83.47 ± 8.11 86.90 ± 7.11
mutagenesis3chains 85.31 ± 7.83 84.17 ± 7.45 85.35 ± 8.62
proteins 59.52 ± 4.08 59.12 ± 5.08 59.92 ± 1.41
suramin 54.54 ± 52.22 - 54.54 ± 52.22

Table 4.6: Accuracy and standard deviation for Setting 3.

Perc. of missing alzheimer toxic genesgrowth thrombosis
values in attribute All Nominal All Nominal All Nominal
>33% 80.00% 90.91% 22.22% 33.33% 59.09% 55.56%
>50% 75.00% 90.91% 0.00% 0.00% 36.36% 22.22%
>66% 75.00% 90.91% 0.00% 0.00% 36.36% 22.22%
>75% 65.00% 81.82% 0.00% 0.00% 36.36% 22.22%

Table 4.7: Overview of portion of attributes with missing values in thealzheimertoxic,
genesgrowth and thrombosismulti-instance datasets (generated with the Joiner). It is
checked how many attributes (in percent) have a percentage of missing values above a cer-
tain threshold. This is done forAll attributes and only forNominalones.

44

4.2.4 Setting 4

Setting 4 uses LogitBoost with default parameters like Setting 2, but instead oftaking

DecisionStump as the other part of the ensemble it uses a decision tree, the REPTree, with a

maximum level of 1. Again there was no post-processing of nominal attributesand missing

values. The goal of this experiment is to check, whether the different handling of missing

values and different treatment of nominal attributes has an impact on the results.

REPTree, like already mentioned in Setting 2, treats missing values as unknown, whereas

the DecisionStump treats them as a separate value and creates an extra branch for it. Further-

more, the REPTree uses multi-way splits on nominal attributes in contrast to the

DecisionStump, which performs binary splits on them.

The REPTree runs into memory problems once again, even though not as severe as in

the previous setting. Here severalgenes* datasets generated by REMILK, as well as the

thrombosisdataset, would consume more memory than allowed, i.e. 1.2GB. In case of the

thrombosisdataset not even the multi-instance data produced by the Joiner succeeded, i.e.

building a model and running cross-validation, failed running out of memory.

As one can see in Figure 4.4 (and the corresponding Table 4.8), all theAlzheimerdatasets

perform a little bit less well, as well asgenesgrowth * . On the other hand, theDrug-data

datasets,dd pyrimidinesanddd triazines, experience a boost in accuracy of over 10%, an

indicator that for these datasets the treatment of nominal attributes is quite essential (missing

values are of no concern here, since the datasets do not contain any).It also shows that the

binarization that RELAGGS performs on nominal attributes is somewhat of a disadvantage

when using such a shallow tree. In such cases the un-binarized multi-instance data seems

to represent the better approach.

45

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e

alz
he

im
er

_c
ho

lin
e

alz
he

im
er

_s
co

po
lam

ine

alz
he

im
er

_t
ox

ic

dd
_p

yri
m

idi
ne

s

dd
_tr

iaz
ine

s

ea
stw

es
t

ge
ne

s_
gr

ow
th

ge
ne

s_
gr

ow
th

_b
in

ge
ne

s_
nu

cle
us

ge
ne

s_
nu

cle
us

_b
in

mus
k1

_r
el

mus
k2

_r
el

mut
ag

en
es

is3
_a

tom
s

mut
ag

en
es

is3
_b

on
ds

mut
ag

en
es

is3
_c

ha
ins

pr
ot

ein
s

su
ra

m
in

thr
om

bo
sis

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

REMILK

Figure 4.4: Comparison for Setting 4.

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 80.85 ± 3.81 74.53 ± 4.56 80.85 ± 3.81
alzheimercholine 74.78 ± 3.25 71.86 ± 3.22 74.78 ± 3.25
alzheimerscopolamine 71.33 ± 5.66 68.45 ± 5.50 71.33 ± 5.66
alzheimertoxic 77.66 ± 3.25 74.14 ± 3.92 77.66 ± 3.25
dd pyrimidines 83.12 ± 2.92 95.06 ± 1.61 95.06 ± 1.61
dd triazines 66.15 ± 1.14 89.15 ± 0.71 89.15 ± 0.71
eastwest 85.00 ± 36.63 65.00 ± 48.93 80.00 ± 41.03
genesgrowth 24.13 ± 1.59 24.10 ± 1.61 -
genesgrowth bin 83.23 ± 0.67 83.23 ± 0.67 -
genesnucleus 82.39 ± 1.63 79.74 ± 1.79 -
genesnucleusbin 92.65 ± 1.16 92.09 ± 1.03 92.56 ± 1.08
musk1rel 77.88 ± 15.20 81.90 ± 13.67 77.87 ± 15.24
musk2rel 78.26 ± 12.58 78.90 ± 12.20 78.56 ± 12.74
mutagenesis3atoms 76.59 ± 9.04 67.87 ± 4.11 76.67 ± 9.44
mutagenesis3bonds 84.06 ± 8.37 72.87 ± 6.67 83.82 ± 7.26
mutagenesis3chains 85.10 ± 8.26 72.92 ± 8.61 84.35 ± 8.63
proteins 59.82 ± 3.50 59.12 ± 5.08 60.17 ± 1.19
suramin 54.54 ± 52.22 63.63 ± 50.45 54.54 ± 52.22
thrombosis 97.46 ± 1.30 - -

Table 4.8: Accuracy and standard deviation for Setting 4.

46

4.2.5 Setting 5

This Setting uses a logit-boosted REPTree with a maximum level of 3 instead of 1.With this

it is possible to explore how important the interactions among attributes are for the differ-

ent datasets. Since an unpruned REPTree grows quite big in case of nominal attributes with

missing values, another preprocessing step was performed for thegenes* datasets: all nom-

inal attributes with at least 33% of missing values were removed. For thegenes relation

relation these were the attributesclass , complex and motif .

The results of this batch of experiments can be found in Figure 4.5 and Table4.9.

Like in Setting 3, thesuramindataset crashes with anOutOfMemory-Exception. A REPTree

with a maximum level of 3 is apparently already to deep to process the multi-valuedat-

tributes with many missing values. For thethrombosisdataset only the RELAGGS data

works with these settings.

In comparison to the REPTree from the previous experiment with just one level, the accu-

racy of RELAGGS increased significantly (roughly 10%) for theAlzheimerand theDrug-

data datasets. The difference between RELAGGS and Joiner data increasesfor

alzheimeramineuptakeand alzheimerscopolamine, but vanishes foralzheimercholine.

The one foralzheimertoxic does not change remarkably. The findings forAlzheimer, re-

garding the accuracy, are linked directly to the size of the datasets: smaller datasets result

in a decrease of accuracy and greater ones in an increase, an indicatorfor overfitting.

In contrast to that, bothgenesnucleusdatasets drop in their accuracy significantly, the in-

creased depth of the tree apparently introduces overfitting. This overfitting also happens to

the classifier built on top of the REMILK data forgenesgrowth, since the accuracy for the

RELAGGS data is slightly worse and the one for the Joiner data is a little bit better.The

expected outcome was that the differences would cancel out each other.

TheMutagenesisdatasets improve, but not so dramatic in case of RELAGGS. The multi-

instance data on the other hand profits more from the increased depth of thetree.

47

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e

alz
he

im
er

_c
ho

lin
e

alz
he

im
er

_s
co

po
lam

ine

alz
he

im
er

_t
ox

ic

dd
_p

yri
m

idi
ne

s

dd
_tr

iaz
ine

s

ea
stw

es
t

ge
ne

s_
gr

ow
th

ge
ne

s_
gr

ow
th

_b
in

ge
ne

s_
nu

cle
us

ge
ne

s_
nu

cle
us

_b
in

mus
k1

_r
el

mus
k2

_r
el

mut
ag

en
es

is3
_a

tom
s

mut
ag

en
es

is3
_b

on
ds

mut
ag

en
es

is3
_c

ha
ins

pr
ot

ein
s

su
ra

m
in

thr
om

bo
sis

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

REMILK

Figure 4.5: Comparison for Setting 5.

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 90.15 ± 3.84 80.46 ± 4.52 90.39 ± 3.33
alzheimercholine 85.75 ± 3.31 86.20 ± 2.79 85.85 ± 3.31
alzheimerscopolamine 86.08 ± 4.92 75.34 ± 4.87 85.82 ± 4.92
alzheimertoxic 93.28 ± 2.58 89.26 ± 3.02 93.25 ± 2.75
dd pyrimidines 93.17 ± 1.79 92.71 ± 1.87 92.76 ± 1.77
dd triazines 73.18 ± 0.91 90.31 ± 0.52 90.25 ± 0.60
eastwest 80.00 ± 41.03 40.00 ± 50.26 80.00 ± 41.03
genesgrowth 21.52 ± 1.34 27.16 ± 1.19 14.11 ± 1.42
genesgrowth bin 83.00 ± 0.64 84.04 ± 0.36 82.22 ± 1.03
genesnucleus 79.00 ± 1.77 68.99 ± 2.05 74.63 ± 1.81
genesnucleusbin 82.76 ± 1.65 77.82 ± 1.99 82.40 ± 1.85
musk1rel 81.78 ± 14.51 84.65 ± 11.22 80.86 ± 14.10
musk2rel 79.00 ± 12.63 81.07 ± 11.89 79.96 ± 12.71
mutagenesis3atoms 81.27 ± 8.82 79.21 ± 9.29 81.79 ± 8.98
mutagenesis3bonds 88.56 ± 8.02 80.85 ± 8.58 88.11 ± 7.04
mutagenesis3chains 86.38 ± 7.06 83.80 ± 7.87 87.38 ± 8.21
proteins 59.54 ± 3.94 59.12 ± 5.08 60.11 ± 1.30
suramin 54.54 ± 52.22 - 54.54 ± 52.22
thrombosis 97.58 ± 1.22 - -

Table 4.9: Accuracy and standard deviation for Setting 5.

48

4.2.6 Setting 6

The final experiment setting consists of J48 boosted by AdaBoostM1. Thiscombination

was chosen since J48 is a commonly used decision tree learner and boostingprovides, in

general, better results. The results (cf. Figure 4.6 and Table 4.10) fromthis setting are also

used in discussions of performance regarding tree sizes and runtimes later on in Section 4.4.

RELAGGS achieves the best results on theAlzheimerdatasets, whereas the MIWrapper

performs not as well as in the previous setting. Considering Table 4.11 (in Section 4.4)

showing that the average size of trees generated from the RELAGGS datais about one

magnitude larger than the ones for the Joiner data this fact is not suprising at all. The

combination of both datasets results in a model with an accuracy as good as RELAGGS,

but with smaller trees.

All three approaches work surprisingly well on thedd pyrimidinesdataset. In case of the

dd triazinesdataset, the JVM crashes with anOutOfMemory-Exception during the execu-

tion the 10 runs of the 10-fold cross-validation and not already during building the model.

Exceptions happened also to the binarized versions of thegenesdatasets and thethrombosis

dataset, running on the REMILK data. Forgenesgrowth the classifier quit on the Joiner

data.

An interesting result was the increasing accuracy on thegenesnucleusdataset from

RELAGGS to REMILK, where the combination of RELAGGS and Joiner data produces the

best result of the three (the outcome that was hoped for in general). In case ofgenesgrowth

(RELAGGS/REMILK) the tree is always pruned back to one node, predicting the majority

class.

The suramindataset normally produced accuracies around 50%. The best results were

always achieved with the Joiner data, but with J48 the RELAGGS data achieves an accuracy

of more than 70% (still, the high standard deviation of roughly 50% persists).

49

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e

alz
he

im
er

_c
ho

lin
e

alz
he

im
er

_s
co

po
lam

ine

alz
he

im
er

_t
ox

ic

dd
_p

yri
m

idi
ne

s

dd
_tr

iaz
ine

s

ea
stw

es
t

ge
ne

s_
gr

ow
th

ge
ne

s_
gr

ow
th

_b
in

ge
ne

s_
nu

cle
us

ge
ne

s_
nu

cle
us

_b
in

mus
k1

_r
el

mus
k2

_r
el

mut
ag

en
es

is3
_a

tom
s

mut
ag

en
es

is3
_b

on
ds

mut
ag

en
es

is3
_c

ha
ins

pr
ot

ein
s

su
ra

m
in

thr
om

bo
sis

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

REMILK

Figure 4.6: Comparison for Setting 6.

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 92.76 ± 3.08 75.50 ± 5.61 93.15 ± 3.30
alzheimercholine 91.18 ± 2.34 79.87 ± 3.28 90.69 ± 2.83
alzheimerscopolamine 90.58 ± 3.55 69.22 ± 5.28 91.28 ± 4.18
alzheimertoxic 96.60 ± 1.94 77.28 ± 4.43 96.76 ± 2.17
dd pyrimidines 96.81 ± 1.33 95.17 ± 1.89 96.94 ± 1.38
dd triazines - 90.90 ± 0.67 -
eastwest 70.00 ± 47.01 50.00 ± 51.29 80.00 ± 41.03
genesgrowth 35.25 ± 0.00 - 35.25 ± 0.10
genesgrowth bin 84.19 ± 0.71 82.54 ± 1.09 -
genesnucleus 69.88 ± 2.39 75.52 ± 1.94 79.62 ± 3.55
genesnucleusbin 93.46 ± 1.37 93.59 ± 1.40 -
musk1rel 83.76 ± 12.60 87.03 ± 11.22 82.85 ± 13.63
musk2rel 80.20 ± 10.78 82.20 ± 11.58 66.71 ± 13.85
mutagenesis3atoms 79.99 ± 7.84 78.41 ± 7.98 80.40 ± 8.30
mutagenesis3bonds 87.83 ± 7.13 82.61 ± 6.66 88.40 ± 6.85
mutagenesis3chains 87.39 ± 7.33 84.76 ± 7.68 88.34 ± 7.44
proteins 59.52 ± 3.74 59.12 ± 5.08 59.36 ± 2.56
suramin 72.72 ± 46.70 63.63 ± 50.45 72.72 ± 46.70
thrombosis 97.33 ± 1.55 90.35 ± 0.91 -

Table 4.10: Accuracy and standard deviation for Setting 6.

50

4.3 Comparison of RELAGGS and Joiner

During the experiments the following question arose: why does the data produced by

RELAGGS for single-instance problems, like theAlzheimerdatasets, achieve better results

compared to the one created by the Joiner, even though there was no aggregation happening

(depicted in Figure 4.7, the bars with the suffix“-1-all”). In the following the necessary

steps are outlined to obtain the same results for both approaches.

The first step is to remove all the columns created by aggregate functions from the

RELAGGS data, leaving only those that are generated byMAX . MAX is still used, since

otherwise no data from adjacent tables will be added to the result table. Theother reason for

MAX is that it does not introduce any new knowledge in case of single-instancedata: it either

returns the only value if there is a corresponding row in the adjacent table,or “NULL” if not.

MIN can also be used for this purpose instead ofMAX , since these functions return the same

value in single-instance data. The data generated by the Joiner is processed in such a way

that all nominal values beside the bag ID and the class are transformed to binary attributes

with the NominalToTrueBinaryfilter. Thus simulating the “counting” of RELAGGS (i.e.

the CNT VAL column) performed on nominal attributes (in single-instance data the count

is either “0” or “1”). But still the results differ as can be seen in Figure 4.7(results with

suffix “-2-no agg”).

One difference in the data is still left: theNominalToTrueBinaryfilter leaves missing values

alone, in contrast to RELAGGS that inserts a count of “0” if it cannot finda certain value

in an adjacent table. By changing the missing values of binarized attributes in the Joiner

data to “0” the same results can be achieved (results with suffix“-3-missing to zero” in

Figure 4.7).

The conclusion from this comparison is that the absence of a feature is valuable informa-

tion. Especially in chemical domains a missing functional group can change themode of

functioning of a molecule quite profoundly.

4.4 Tree sizes and runtimes

Depending on the goals, the highest accuracy might not always be the best choice. In a

time-critical system, where one always has to rebuild models within a given time limit, one

will settle with a less accurate, but faster, model. It is better to have a result than none. If

one is thinking of embedded systems with their limited system resources, smaller models

51

0

10

20

30

40

50

60

70

80

90

100

alz
he

im
er

_a
m

ine
_u

pt
ak

e-
1-

all

alz
he

im
er

_a
m

ine
_u

pt
ak

e-
2-

no
_a

gg

alz
he

im
er

_a
m

ine
_u

pt
ak

e-
3-

miss
ing

_t
o_

ze
ro

alz
he

im
er

_c
ho

lin
e-

1-
all

alz
he

im
er

_c
ho

lin
e-

2-
no

_a
gg

alz
he

im
er

_c
ho

lin
e-

3-
m

iss
ing

_t
o_

ze
ro

alz
he

im
er

_s
co

po
lam

ine
-1

-a
ll

alz
he

im
er

_s
co

po
lam

ine
-2

-n
o_

ag
g

alz
he

im
er

_s
co

po
lam

ine
-3

-m
iss

ing
_to

_z
er

o

alz
he

im
er

_t
ox

ic-
1-

all

alz
he

im
er

_t
ox

ic-
2-

no
_a

gg

alz
he

im
er

_t
ox

ic-
3-

m
iss

ing
_t

o_
ze

ro

Datasets

A
cc

u
ra

cy
 in

 %

RELAGGS

Joiner

Figure 4.7: Performance comparison of RELAGGS and Joiner on the Alzheimer dataset (the
suffices indicate the step referenced in the text). The used classifier wasthe tree-classifier
J48 with default values.

are preferred over larger (and possibly more accurate) ones.

The basis for the discussion is Setting 6 using AdaBoostM1 combined with J48.Only

datasets where all three approaches generated results are considered. In the following the

size of the trees, the time for building a model and evaluating it, and the performance of dif-

ferent database systems are taken into account. All figures are the average over 10 iterations

of AdaBoostM1 (if boosting could be performed at all).

In Table 4.11 one can see that RELAGGS is producing the smallest tree 10 out of 14 times

(on average). A quite interesting fact is that the REMILK trees only get smaller compared to

the RELAGGS trees, if the multi-instance data from the Joiner produces the smallest tree.

The expectation that the combination of the multi-instance data with the aggregateddata

would produce the best results was not fulfilled. Most of the time (9 out of 14) it generated

marginally better results than RELAGGS, but with a greater standard deviation.

Based on the current results one can say that RELAGGS produces in general the smaller

trees, but that seems to be quite dataset dependent (for allAlzheimerdatasets, the Joiner

approach creates the smallest trees).

The results in Table 4.12 suggest that RELAGGS is the fastest approach,considering the

overall running time. Even though RELAGGS and the Joiner are both fastest in the same

number of cases, the multi-instance learner is only faster in case of single-instance datasets

due to the smaller number of attributes it has to consider for building the model. Measured

52

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 73.60 10.89 70.50
alzheimercholine 166.80 16.63 136.00
alzheimerscopolamine 95.00 9.00 49.90
alzheimertoxic 80.80 8.60 47.40
dd pyrimidines 144.20 391.80 178.60
dd triazines - 5096.50 -
eastwest 4.00 31.40 5.00
genesgrowth 1.00 - 1.00
genesgrowth bin 97.14 186.80 -
genesnucleus 327.25 1317.67 1082.25
genesnucleusbin 161.90 410.70 -
musk1rel 11.00 44.80 13.00
musk2rel 9.60 182.80 31.00
mutagenesis3atoms 22.20 37.57 37.00
mutagenesis3bonds 14.00 109.60 33.00
mutagenesis3chains 13.60 183.20 35.00
proteins 6.56 14.33 6.56
suramin 3.00 15.20 5.00
thrombosis 19.20 600.00 -
Times Smallest Tree 10 4 1

Table 4.11: Tree size for AdaBoostM1/pruned J48 averaged over 10 iterations (only datasets
with results for all three approaches were considered for the “Smallest Tree” count).

absolutely, the multi-instance learner is slower.

Finally the performance of different database systems, namely MySQL andPostgreSQL,

will be discussed (based on Proper version 0.1.1; performed on a mobile Pentium 4/1.60GHz

with 512MB of RAM). Oracle 10g, a commercial product, could not be included due to

lack of disk-space. But preliminary tests with theeastwestdataset (Oracle 10g is sort of an

overkill for that dataset, since the initial size for a database is more than 500MB) revealed

the applicability of the framework. The only drawback was that the databases cannot be

created “on the fly” like with MySQL or PostgreSQL, but have to be installed by a database

administrator (DBA) beforehand.

As one can see in Table 4.13, the version optimized for MySQL (and therefore not portable)

performs best. Due to modifications to the RELAGGS code, concerning the adding of

columns (in ANSI SQL one can add only one column at a time, whereas in MySQLone

can add as many as necessary) and the setting of the default values for numerical columns

(PostgreSQL does not yet support theDEFAULT x property, it has to be simulated with a

subsequentUPDATE statement), the performance drops significantly. Since PostgreSQL is

a fully-fletched object-relational database system, it seems to suffer fromthis overhead quite

dramatically. Given the current results one might want to stick to the optimized MySQL ver-

sion, if one is not dependent on an ANSI SQL compatible system. MySQL alsoappears to

53

Dataset RELAGGS Joiner REMILK
alzheimeramineuptake 3408 399 1880
alzheimercholine 6409 1589 7932
alzheimerscopolamine 1687 491 4888
alzheimertoxic 3096 838 8745
dd pyrimidines 3613 75 2874
dd triazines - 1023 -
eastwest 2 4 1
genesgrowth 1845 - 8647
genesgrowth bin 15018 200679 -
genesnucleus 9618 119363 367823
genesnucleusbin 18763 206016 -
musk1rel 811 1240 445
musk2rel 1393 59538 54427
mutagenesis3atoms 37 41 288
mutagenesis3bonds 60 510 3106
mutagenesis3chains 128 1385 3964
proteins 435 3 56
suramin 2 39 32
thrombosis 524 31777 -
Times Fastest 6 6 2

Table 4.12: Runtimes in seconds for AdaBoostM1/pruned J48 (i.e. time to build the classi-
fier for printing the tree and to execute 10 runs of 10-fold CV). Only datasets with results
for all three approaches were considered for the “Fastest” count.

Dataset MySQL (optimized) MySQL PostgreSQL
Imp. REL Joi. REM Imp. REL Joi. REM Imp. REL Joi. REM

alzheimertoxic 8 30 10 14 8 222 14 17 157 359 23 17
dd triazines 170 96 10 21 158 796 11 11 3475 abrtd abrtd abrtd
eastwest 1 1 1 1 3 6 2 1 14 11 2 1
genesnucleus 19 6 6 339 21 12 4 1235 661 80 8 15
musk2rel 73 53 3 220 69 2136 4 col 401 col 9 col
mutagenesis3chains 16 3 0 9 15 7 0 13 267 21 2 5
proteins 7 3 0 13 6 6 0 12 255 89 1 2
suramin 11 4 1 6 9 51 1 6 - - - -
thrombosis 593 col 31 1478 594 col 25 - - - - -

Table 4.13: Runtimes in seconds for different database systems (Imp. = Import,
REL = RELAGGS, Joi. = Joiner, REM = REMILK).Note: “col” means that too many
columns were produced (but not necessarily a program termination), “abort” that the pro-
cess was aborted, because consuming too much time, and “-” that the process was not
executed at all.

54

be more stable compared to PostgreSQL (if that statement is possible, based onthe expe-

rience with relatively small databases), PostgreSQL e.g. just hung sometimes, without any

apparent reason, while importing thealzheimertoxicdata.

4.5 Summary

Summarizing the above discussed experiments, one can say that even though RELAGGS is

not the fastest approach for generating the data used as input for the classifier (the Joiner

beats RELAGGS quite often, cf. Table 4.13), the smaller amount of data produced due to

the aggregation speaks in favour of RELAGGS. The memory usage for a normal proposi-

tional classifier based on RELAGGS data is considerably less than that of MILK, using the

data generated by the Joiner or REMILK. This is crucial if one considerslarger datasets,

like thrombosis, even though this is, compared to tables in “real world” databases, quite a

“small” table. There single tables (before the propositionalization takes place) can house

several million rows, instead of only 80,000+. The REMILK approach is also problematic,

due to the huge amounts of space it needs for the combination of both tables. An approach

to tackle these space issues will be presented later in the Conclusion in Section5.

55

Chapter 5

Conclusion and Future Work

This thesis presents an attempt to develop a practical database-oriented framework for dif-

ferent propositionalization algorithms. The flexible and easy-to-upgradedesign allows for

the future integration of other propositionalization algorithms in addition to RELAGGS.

Thanks to the graphical user interfaces one can easily set up new experiments. Proper

makes standard propositional and multi-instance learning algorithms available for relational

learning. The experiments given in this thesis have shown the feasibility of thisapproach.

The most fruitful direction for future work involves algorithmic improvements of efficiency.

Proper’s current approach of generating all the data beforehand isessentially abottom-up

approach, its main drawback being a potentially large memory requirement. A possible

workaround could be atop-downapproach that generates one final tuple after the other,

potentially recomputing intermediate results over and over again, but at a muchreduced

total memory cost. Ideally such an incremental Proper variant would also becoupled to

incremental propositional learning algorithms to take full advantage of any space savings.

A further optimization concerns the replacement of expensive complete joinsby the propa-

gation of only keys instead1.

For better portability of Proper the database querying must be fully ANSI SQL compliant,

which will require some changes, e.g. the replacing of the already mentioned MySQL

extension of the standard deviation (“STDDEV ”). Also the support offoreign key relations

by the JDBC driver would make the auto-discovery function for relations between tables

more efficient and the naming convention, i.e. same name in two tables defines a relation

between them, irrelevant. A side effect would be a more convenient way ofassembling a

relation tree.

Due to the promising results on benchmark datasets, the next step will be to apply Proper to

1A tool for doing this is provided with version 0.1.1 of the framework.

57

a “real world” system:TIP – theTourismInformationProvider [Hinze & Voisard, 2003].

Standard machine learning algorithms could replace the simple thresholds usedfor making

recommendations to tourists, based on data supplied by Proper’s algorithms.

To conclude this thesis one can say that propositionalization is by all means a feasible

approach to learn from relational data. By using the RELAGGS approachone is able to

produce compact representations of the underlying relational data without abandoning pre-

dictive power. Even though RELAGGS takes longest (in the current implementation) in

generating the data used as input for a learner, the building of a classifierfor predictions is

a lot faster compared to the other approaches, Joiner and REMILK, thanks to the smaller

amount of data being produced for the learner.

58

What do a dead cat, a computer whiz-kid, an Electric Monk who believes the world is pink,
quantum mechanics, a Chronologist over 200 years old, Samuel Taylor Coleridge (poet)
and pizza have in common? Apparently not very much;
...and that’s where machine learning comes in.

— freely adapted from Douglas Adams

Appendix A

Implementation

In this chapter a brief introduction to the Proper framework will be given. Firstly, how

execution takes place and then secondly the classes (in UML notation) that form the frame-

work.

A.1 Execution

The execution of a tool in the Proper framework happens in two stages, which is depicted

in Figure A.1:

1. Parse command line arguments. A specializedApplication parses the command

line arguments (via theCommandLine class) and initializes a specializedEngine,

i.e. transferring the parsed parameters.

2. Execution. A specializedEngine is executed.

In case of aCommandLineFrame the user can interactively change the parameters and

hence influence the execution. If the GUI element is just a visual front-end to a command

line based tool, then it normally calls anApplication instance with the necessary pa-

rameters instead of initializing theEngine itself again. This happens with theBuilder,

which only reads the ANT files and feeds the parameters into theApplication. In other

circumstances, e.g. if the element is an aggregation of several tools, it mightbe easier to

initialize eachEngine directly. A more detailed overview of the activities taking place can

be found in Figure A.2 and A.3.

61

Figure A.1: General overview of the flow of parameters inside the framework.

Figure A.2: Execution of a command lineApplication.

62

Figure A.3: Execution of aCommandLineFrame - the execution of anEngine is omit-
ted.

A.2 Class Diagrams

In the following most of the classes that are part of the Proper frameworkare shown with

their most important methods and members. This overview is by no means complete,its

only purpose is to provide the big picture of the framework. The order is based on the

package structure.

Packageproper.app

This package contains classes that can be started from the command line. Any parameters

that are provided will be interpreted and passed on to a specializedEngine (cf. page 70)

instance.

65

66

Packageproper.core

Most classes are derived from the classProperObject, which contains essential methods

for output and debugging. The frames in Proper (cf. page 74) provide the same functionality

due to the implementation of theProperInterface.

67

Packageproper.database

In this package all classes can be found that are related to database access.

68

69

Packageproper.engine

Here the classes are located that represent the actual tools, whereas the Application

classes are only the parser of the command line arguments.

70

Packageproper.gui

The main class for the GUI, that starts all other GUI tools, is found here.

71

Packageproper.gui.core.dialog

Special dialogs used in the framework.

72

Packageproper.gui.core.event

The package forListener and EventObjects .

73

Packageproper.gui.core.frame

The frames that form the basis for all frames in Proper are located here.

74

Packageproper.gui.core.list

Classes concerningJList are in this package.

Packageproper.gui.core.panel

General and special panels, e.g. for theArffViewerare in this package.

75

Packageproper.gui.core.table

JTable related classes populate this package.

76

Packageproper.gui.core.text

All classes concerning text elements are found here.

Packageproper.gui.core.tree

Core classes regardingJTree are located here.

77

Packageproper.gui.experiment

Several tools for executing or building experiments, including theBuilder, can be found

here. These tools are found in the menu below “Experiment”.

78

Packageproper.gui.help

The classes located in the “Help” menu are found here.

79

Packageproper.gui.remote

Tools for administrating the distributed experiments, menu “Remote”, are locatedin this

package.

Packageproper.gui.util

The tools from the “Util” menu, including theArffViewer.

80

Packageproper.imp

Helper classes for the import, like parser and post-processing, are found here.

81

82

Packageproper.io

IO related classes, like for accessing ANT files and parsing command line parameters, are

found in this package.

83

Packageproper.net

Classes used for network communication are found here.

84

Packageproper.remote

The classes concerning the execution of distributed experiments are in this package, includ-

ing theJobServer and theJobClient.

85

86

Packageproper.remote.messages

The different messages that are sent betweenJobServer andJobClient.

87

Packageproper.util

Some basic helper classes and interfaces.

88

Packageproper.xml

Core XML components are found in this package.

89

A.3 Development

The following tools were used in the course of development:

- Java - SDK 1.4.2

http://java.sun.com/

- ANT 1.6.0

http://ant.apache.org/

- VIM 6.2.98 (mainly) & NetBeans 3.5 (sometimes) for developing

http://www.netbeans.org/

- cygwin 1.5.5-1 (Bash for Win32)

http://www.cygwin.com/

- SSH-Agent (part of cygwin)

http://mah.everybody.org/docs/ssh/

- MySQL 3.23.47 (NT)/3.23.58 (linux-i686) & JDBC driver MySQL-Connector 2.0.14

http://www.mysql.com/

- PostgreSQL 7.4.1 & JDBC driver 7.4 build 213

http://www.postgresql.org/

- Oracle 10g for Win32 & Oracle Driver 10.1.0.2.0

http://www.oracle.com/

90

Appendix B

Proper Manual

B.1 Main Menu

1 Program

1.1 WEKA

Starts WEKA - but be careful: closing WEKA also results in closing Proper!

1.2 Shell

Opens a shell

1.3 Exit

Exits Proper

2 Experiment

Either predefined experiments or self-defined ones can be executed here

91

2.1 Setup

Creates the databases and imports the data for the predefined experiments

2.2 MILK

Performs a flattening of the whole database of each experiment into a single table, export-
ing the content to an ARFF file and evaluating that. For some experiments classifying of
unknown instances may take place and also some testing.

92

2.3 RELAGGS

Instead of flattening a database RELAGGS uses aggregation for propositionalization and
performs the same steps after exporting like MILK.

2.4 REMILK

REMILK is the combination of MILK and RELAGGS, i.e. it uses the multi-instance data
from MILK and adds the aggregation from RELAGGS to it.

93

2.5 Builder

The Builder enables the user to build his own experiments from scratch. I.e.setting up
databases, importing data and performing propositionalization etc. The experiments can be
saved to ANT files.

2.6 Run

Here you can run any ANT file that was built for Proper.

94

3 Remote

Tools for distributed computing are found here.

3.1 JobMonitor

The JobMonitorenables one to check on anyJobServerthat is currently running, started
with ./scripts/server.sh . It provides insight into what clients are registered with
this server, how many jobs are done or have failed.

3.2 Jobber

With this tool you can create a job file that aJobServer(started with the script./scripts/server.sh
) uses as input. The basis are previously generated ANT files, either the predefined ones or
user-defined.

95

4 Util

Several useful utilities for working with Proper

4.1 ArffViewer

A little Viewer for ARFF files that is also able to edit them.

By clicking with the right mouse button on the header of a column you get additional func-
tions:

96

4.2 Editor

A simple Text editor.

4.3 Logger

For viewing log files and searching in them.

97

4.4 Relations

A little tool for exploring the relations of a database.

4.5 SqlViewer

For querying an SQL-Server (select , insert , update , desc are supported).

98

4.6 XSLer

A tool for testing XML/XSL.

5 Windows

For handling the windows in Proper. As soon as a window is opened it appears in this menu.

5.1 Minimize

Minimizes the application and all of its windows.

5.2 Restore

Restores the application and all of its windows.

99

6 Help

If you need Help concerning Proper, this is the place to look for.

6.1 Help

This is the central place to look for information of how to use Proper, how theclasses are
used etc.

6.2 About

Thefamousabout box... ;-)

100

B.2 First Steps

1 Predefined Experiment

Here we show how an already defined experiment, the East-West-Challenge, is carried out.
The corresponding ANT files are each time mentioned.
All mentioned menu items are found in the “Experiment” menu.

1.1 Setup

For this we execute the menu item “Setup”.
You can change properties of the ANT file temporarily for a run by clicking on “Options”
and editing them.
With “Reload” you restore them to the ones stored in the file.

1.1.1 Creating the Database (database.xml)

- Choose “Database” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

101

1.1.2 Importing the Prolog Data (import.xml)

- Choose “Import” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

1.2 MILK

For this we execute the menu item “MILK”.

1.2.1 Propositionalization (proper-mi.xml)

- Choose “Proper” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

102

1.2.2 Exporting to ARFF (export-mi.xml)

- Choose “Export” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

1.2.3 Evaluating (evaluate-mi.xml)

- Choose “Evaluate” from Steps
- Highlight “eastwest” in the Datasets
- Click on “Start”

103

1.2.4 Further Steps

There are also two more steps for some other experiments:
- Classifying of unknown instances (classify-mi.xml)
- Testing the built classifier against a test set (test-mi.xml)

1.3 RELAGGS

Here the same steps are performed like with MILK, but starting from the menu item “RELAGGS”.
(the ANT files have the same name, but without the “-mi”)

1.4 REMILK

Ditto, but with menu item “REMILK”.
(the ANT files have the same name, but without the “-remi”)

104

2 User-defined Experiment

Instead of adding new Experiments to existing ANT files (import.xml, export.xml, etc.)
Proper also offers the possibility to create ANT files for single experiments.
This is quite useful, since an experiment has to be included in all the standardANT files
and not just the one where it is needed. Let’s say, if we just want to test different classifiers
or different export schemes, we can do this easily with the so called “Builder”.
The “Builder” is an easy way to “click” ones way to an experiment: it automatically creates
ANT files with the calls of the necessary Java classes and the necessary parameters.

For this purpose we need two Tools, both of them found in the “Experiment” menu, in turn
(since we’re building up the experiment incrementally, i.e. setting up and testing):
- Builder (for generating the ANT file)
- Run (for executing the experiments)

We show the use of the Builder exemplary at the dataset of the East-West-Challenge (the
representation of the dataset differs a little from the previous one).

2.1 Setting up the Database

Either start the Builder or if it is already started create a new Experiment by selecting the
menu item “New”.
Since we want to create the database and the Builder only checks and saves the ticked Steps,
make a tick at “Database”

105

When we change to the Database tab, we see that the database name is a placeholder.

We can either change the name here or do this in the properties (recommended), e.g.
“first experiment” (underscore instead of blank!).

106

After changing the name we save the experiment:

Now we’re ready for the first test, i.e. we’ll have to execute the “Run” menuitem and open
the previously saved file (via “Add” - it is possible to add more than one ANT file here):

107

Since we now only have one target to execute, we don’t have to choose it.If we don’t
choose specific targets, all of them are executed (can take a long time if oneis not careful
;-)). We start the execution by clicking on “Start”.

If no errors occurred we can continue with the next step...

2.2 Importing the Data

Since we now want to import the data into the database we’ll have to check the Step “Im-
port”:

108

After changing back to the Import tab, we’ll have to choose the file(s) we want to import.
The East-West-Challenge consists of a relational Prolog database with Positive and Neg-
ative examples, so we check “Pos./Neg. Examples” and open the file “20trains.pl” in the
datasets directory beneath “trains2”:

Since we also have unclassified examples, we check this and open the file “100trains.pl”

109

By saving these changes and reloading the ANT file in the Run-Window, we should get an
output like this after a successful run:

110

2.3 MILK

Now we want to generate multi-instance data, which is just creating one table out of the
relational database. The target we’re interested in, is the direction the trains are going: east
or west.
From now on we don’t show explicitly which Step to tick, since it is obvious from the head-
ings of the following pararaphs.

2.3.1 MI Data Generation

First we choose the table “eastbound” (by connecting to the database and selecting the
database “firstexperiment”)

Next we choose the field “eastbound1”, which contains the direction of thetrains

The rest of the default parameters are just the way we need them.

111

After a successful run we get an output like this:

2.3.2 Export (classified Examples)

For the export of the classified examples, i.e. the training examples for our classifier, we
only need to set “Field” (our class in the ARFF file) to “eastbound1” in the “relaggs” table.

112

2.3.3 Export (unclassified Examples)

As with the classified examples we only have to set “Field” to “eastbound1” again

2.3.4 Evaluate

The next step is to train our classifier on the given training set, which we exported via
“Run”.
We can either use the standard classifier as input for the MIWrapper, which is J48 or choose
another WEKA-Classifier (it is recommended to change the classifier in the Properties-Tab,
since the updating of one value for a placeholder is easier and less errorprone).

113

After running the Evaluation in “Run” we should receive this output:

Note: One error source can be that the project name contains a blank.

2.3.5 Classify

Our previously exported unclassified examples can now be labeled in the Classification step.
The default values are sufficient for this.

114

2.4 RELAGGS

The next tool we want to parametrize, is RELAGGS, which is based on aggregation of the
adjacent tables around the main table where the target attribute is located.

2.4.1 Propositionalization

Like in MILK we choose “eastbound” as the “Table” and “eastbound1” as the “Field” to
use in the propositionalization step.

115

Which results in an output like this:

Note:
That “c , eastboundlist0 , l ” are listed in the left over tables is absolutely correct. RELAGGS
only aggregates the directly adjacent tables, so that the tables “c” and “l ” wouldn’t be
touched. Hence we create temporary tables (with the prefix “relaggsed”) that resemble
joins of the branches.

116

2.4.2 Export (classified Examples)

Here we only have to set “Field” to “eastbound1” in the table “relaggs”

2.4.3 Export (unclassified Examples)

Again set only “Field” to “eastbound1” in the table “relaggs”

117

2.4.4 Evaluate

The same as with MILK, the only difference is that you can choose a normalWEKA clas-
sifier instead of a MILK classifier.

2.4.5 Classify

The same as with MILK, the only difference is that you can choose a normalWEKA clas-
sifier instead of a MILK classifier.
The resulting ARFF file with the labeled instances can be viewed with the ArffViewer:

118

2.5 REMILK

The parametrization of REMILK is basically the same as with the previous ones.We only
want to explain the generation of multi-instance data in short, where the join of the MILK
and the RELAGGS table happens.

2.5.1 Propositionalization

The values that can be entered here are the same as with the ones from MILK and RELAGGS
with only one exception:
you can also define a field for the join of the two tables. In some cases it can happen that the
wrong column or none at all is determined automatically. If this is the case you can specify
a field here, that acts as the join column, normally would this be the bag column.

119

3 Other stuff

The generated statistics ARFF files can be evaluated with the following script:

scripts/evaluate.sh

It creates CSV files (US and DE) and LATEX-tables.

The CSV files that are generated can be inserted in the following MS Excel template that
contains some useful Macros for visualization:

docs/ experiments.xlt

A general template for exporting Excel tables to LATEXis the following:

docs/ latex table.xlt

120

Appendix C

Datasets

The following datasets1, listed here with the web resource they originate from, were used
during the experiments:

- Alzheimer’s disease
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/alzheimers.html

- Drug-data design
ftp://ftp.mlnet.org/ml-archive/ILP/public/data/drug/

- East-West-Challenge
The version used by F.̌Zelezńy’s RSD:
http://www.cs.waikato.ac.nz/ml/proper/datasets/eastwest

A slightly different dataset can be found here:
ftp://ftp.mlnet.org/ml-archive/ILP/public/data/east west/

- Genes. Besides the original KDD 2001 Cup data two binarized datasets were created
the same way as described in [Krogel et al., 2003].
http://www.cs.wisc.edu/simdpage/kddcup2001/

- Musk 1/2
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/musk/

- Mutagenesis
http://www.cs.waikato.ac.nz/ml/proper/datasets/mutagenesis3

The version used by F.̌Zelezńy’s RSD:
http://www.cs.waikato.ac.nz/ml/proper/datasets/mutagenesis

The original dataset can be found here:
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/mutagenesis.html

- Secondary structure of proteins
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/proteins.html

- Suramin analogues
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/suramin.html

- Thrombosis
http://www.uncc.edu/knowledgediscovery/MedicalData.html

1The datasets can be downloaded from the Proper homepage http://www.cs.waikato.ac.nz/ml/proper/datasets/.
Scripts are included to convert the original data into the one that was used inthe experiments.

121

Bibliography

Blockeel, H. & De Raedt, L. (1998). Top-down Induction of First-Order Logical Decision
Trees.Artificial Intelligence, 101(1-2), 285–297.

Clark, P. & Nibbet, T. (1989). The CN2 induction algorithm.Machine Learning, 3, 261–
283.

De Raedt, L. (1997). Clausal Discovery.Machine Learning, 26, 99–146.

De Raedt, L. (1998). Attribute-value learning versus Inductive Logic Programming: The
missing links. InProceedings of the 8th International Conference on Inductive Logic
Programming(pp. 1–8). Springer, Berlin.

Dehaspe, L. & De Raedt, L. (1997). Mining Association Rules in Multiple Relations. In
Proceedings of the 7th International Workshop on Inductive Logic Programming (ILP)
(pp. 125–132).

Dietterich, T. G., Lathrop, R. H. & Lozano-Pérez, T. (1997). Solving the multiple-instance
problem with axis-parallel rectangles.Artificial Intelligence, 89(1-2), 31–71.

Digital Equipment Corporation, Maynard, Massachusetts (1992). Information Tech-
nology - Database Language SQL (Proposed revised text of DIS 9075). URL
http://www.contrib.andrew.cmu.edu/ shadow/sql/sql1992.txt.

Džeroski, S. (2002). Relational Data Mining: A Quick Introduction. Summer School on
Relational Data Mining, Helsinki, Finland.

Flach, P. (2002). Propositionalisation as a way of understanding RDM and ILP. Summer
School on Relational Data Mining, Helsinki, Finland.

Frank, E. & Xu, X. (2003). Applying Propositional Learning Algorithms toMulti-
instance data. Working paper 06/2003. Department of Computer Science,University
of Waikato.

Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In
Proceedings of the 13th International Conference on Machine Learning(pp. 148–156).

Friedman, J., Hastie, T. & Tibshirani, R. (1998). Additive Logistic Regression: a Statistical
View of Boosting.

Hinze, A. & Voisard, A. (2003). Location- and Time-Based Information Delivery in
Tourism, Volume 2750 ofLNCS(pp. 489–507). Springer-Verlag Heidelberg.

Kleinberg, E. M. (2003). Stochastic Discrimination.Annals of Mathematics and Artificial
Intelligence, 1, 207–239.

123

Kramer, S., Lavrǎc, N. & Flach, P. (2001). Propositionalization Approaches to Relational
Data Mining. In L. N. D́zeroski S. (Ed.),Relational Data Mining. Springer Verlag,
Berlin Heidelberg New York.

Krogel, M.-A., Rawles, S.,̌Zelezńy, F., Flach, P., Lavrǎc, N. & Wrobel, S. (2003). Compar-
ative Evaluation of Approaches to Propositionalization. In Horváth, T. & Yamamoto,
A. (Eds.),Proceedings of the 13th International Conference on Inductive Logic Pro-
gramming (ILP). Springer-Verlag.

Krogel, M.-A. & Wrobel, S. (2003). Facets of Aggregation Approaches to Propositional-
ization. In Horv́ath, T. & Yamamoto, A. (Eds.),Proceedings of the Work-in-Progress
Track at the 13th International Conference on Inductive Logic Programming (ILP).

Lavrǎc, N. & Džeroski, S. (1994).Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood.

Muggleton, S. (1995). Inverse entailment and Progol.New Generation Computing, Special
issue on Inductive Logic Programming, 13, 245–286.

Pfahringer, B. & Holmes, G. (2003). Propositionalization through Stochastic Discrimina-
tion. In 13th International Conference on Inductive Logic Programming.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learning. Morgan Kaufmann.

Železńy, F., Lavrǎc, N. & Džeroski, S. (2003). Constraint-Based Relational Subgroup Dis-
covery. InWorkshop on Multirelational Data Mining (MRDM 03) at KDD 03, Wash-
ington.

124

