
A Toolbox for Learning from Relational Data

with Propositional and Multi-Instance Learners

Peter Reutemann1,2, Bernhard Pfahringer2, and Eibe Frank2

1 Department of Computer Science, University of Freiburg, Freiburg, Germany
2 Department of Computer Science, University of Waikato, Hamilton, New Zealand

Abstract. Most databases employ the relational model for data stor-
age. To use this data in a propositional learner, a propositionalization
step has to take place. Similarly, the data has to be transformed to be
amenable to a multi-instance learner. The Proper Toolbox contains an
extended version of RELAGGS, the Multi-Instance Learning Kit MILK,
and can also combine the multi-instance data with aggregated data from
RELAGGS. RELAGGS was extended to handle arbitrarily nested re-
lations and to work with both primary keys and indices. For MILK
the relational model is flattened into a single table and this data is fed
into a multi-instance learner. REMILK finally combines the aggregated
data produced by RELAGGS and the multi-instance data, flattened for
MILK, into a single table that is once again the input for a multi-instance
learner. Several well-known datasets are used for experiments which high-
light the strengths and weaknesses of the different approaches.

1 Introduction

This paper describes the Proper Toolbox [4], a general framework for database-
oriented propositionalization algorithms that can also create multi-instance data
from relational data.1 The paper is organized as follows: first we discuss the RE-
LAGGS propositionalization system, which is a major component of Proper, and
then the other components of Proper. After that we report on results obtained
from a suite of experiments that apply Proper to some relational benchmark
datasets. The final section summarizes the paper.

2 The Proper Toolbox

In this section we discuss the various components of Proper, starting with its
most important building block, RELAGGS.

2.1 RELAGGS: The propositionalization engine

RELAGGS is a database-oriented approach based on aggregations that are per-
formed on the tables adjacent to the table that contains the target attribute. For

1 Proper is freely available from http://www.cs.waikato.ac.nz/ml/proper/.



each row in the target table the following SQL group functions are executed for
all numeric columns in the adjacent tables: average, minimum, maximum, sum.
Additionally standard deviation, quartile, and range are computed. For nominal
columns the number of occurrences of each nominal value is counted and repre-
sented as a new attribute. RELAGGS also computes aggregations based on pairs
of attributes with one nominal attribute. This nominal attribute serves as an ad-
ditional GROUP BY condition for the aggregation process [2]. RELAGGS uses the
names of primary keys to determine the relationships between the various tables
in the database. Proper uses the version of RELAGGS from [3].

We modified RELAGGS to relax some of the constraints it imposes on its
input. First, RELAGGS expects an integer as the primary key of a table. In
some domains the primary key of the table is an alpha-numeric string. In such
cases Proper generates an additional table containing the original identifiers and
newly generated integer keys, which replace the original alpha-numeric keys in
all other tables. Second, determining the relationship between two tables solely
using primary keys proved to be problematic when the relationship between dif-
ferent tables is based on compound IDs. Compounds may have more than one
instance and this clearly rules out the compound ID as a primary key. There-
fore, instead of primary keys, indices are used to identify relationships between
tables. Third, the use of indices instead of primary keys unfortunately has fur-
ther consequences: joins may work differently, and care has to be taken to avoid
loss of information. When importing datasets into Proper, either an additional
unique index (based on table name and row-ID) is generated automatically, or
some key can be specified to be the unique index. Fourth, due to the possibility
of importing Prolog data, and the closed-world assumption used in Prolog-based
representations, tables do not necessarily include explicit information about the
absence of feature values. Hence, to prevent against potential loss of instances in
joins, Proper uses the LEFT OUTER JOIN instead of the NATURAL JOIN (which is
used in the original version of RELAGGS). Fifth, since the above version of RE-
LAGGS only aggregates tables adjacent to the target table, Proper pre-flattens
arbitrarily deep nested structures into temporary tables.

2.2 The other components of Proper

In the following we describe the Proper framework, which is depicted in Figure 1.
We will explain the individual steps with suitable examples. The first step is the
import of data from a file or database.

Import Currently Proper supports two different formats for importing data
into databases: Prolog (only extensional knowledge, but including ground facts
with functors) and CSV-files (with or without identifiers for the columns). For
both formats the types of the columns in the table are determined automatically.
Supported types are Integer, Double, Date and String. CSV import is pretty
straightforward, since the data is already in a column-like representation. If the
file contains a header row with the names of the columns, then these are used.



Fig. 1. Proper’s program structure.

Otherwise a name is constructed automatically out of both the file name and
the position of each column.

Prolog (or closely related for-
train(east,

[c(1,rectangle,short,not double,none,2,l(circle,1)),

c(2,rectangle,long,not double,none,3,l(hexagon,1)),

c(3,rectangle,short,not double,peaked,2,l(triangle,1)),

c(4,rectangle,long,not double,none,2,l(rectangle,3))]).

Fig. 2. East-West-Challenge Example.

mats like Progol or Golem) can
be imported into databases in
such a way that each functor
represents a separate table. Con-
sider the example of the East-

West-Challenge in Figure 2. Since this dataset is a relational Prolog database we
do not need to specify the relations between the functors explicitly. Otherwise
we would have to do this by indicating which argument index functions as a
key, e.g. in the well-known Alzheimer datasets the argument that contains the
compound ID.

The structure of this example can easily be translated into the table structure
shown in Figure 3. The train list table would not actually be necessary to
represent the 1..n relationship between train and car, but this is Proper’s
generic approach of storing each functor in its own table. In the case of uniform
lists (i.e. all lists are of same length) Proper can also turn a list directly into a
table with an equal number of columns. This built-in optimization gets rid of
one table thus reducing the complexity of the generated database.

Proper also includes

Fig. 3. East-West-Challenge as a relational database.

a few more advanced fea-
tures for importing Pro-
log. First, if the relations
cannot be determined from
the Prolog database it-
self, it is possible to de-
fine them explicitly via
foreign key relations. Then during import, functors will be rearranged to fit the
proposed relational model. Second, for problems that are represented as flat,
ground Prolog facts one also has to specify which columns are to be used for
joins, as this is not necessarily obvious from the plain data. Third, depend-
ing on the representation of the data there might be more than one argument



containing a key, e.g. in the Alzheimer datasets, where there are functors that
define a relation between the two arguments: less toxic(a1, b1). For a sym-
metric relation equally toxic, the instance equally toxic(a1, b1) is split
into two instances equally toxic(a1, 1) and equally toxic(b1, 1), where
the second argument is the so called split id that links both instances to-
gether. To properly represent asymmetric relationships, new distinct functors
have to be defined for each argument position and less toxic(a1, b1). be-
comes less toxic(less toxic0(a1), less toxic1(b1)).

Joiner The central processing algorithm in Proper is the Joiner. As can be
seen in Figure 1 the Joiner performs the flattening of arbitrarily nested struc-
ture of relations into appropriate structures for RELAGGS (maximum depth
of 1), MILK (one flat table of depth 0, suitable for the multi-instance learning
kit MILK) and REMILK (also one flat table). In multi-instance learning each
example consists of several instances, and is also called a bag of instances. The
data for REMILK (RE lational aggregation enrichment for MILK) is produced
by joining the tables that have been generated for RELAGGS and MILK.

The Joiner works on tree structures. To build up such a tree structure the
Joiner can either use user-specified relationships between tables or discover such
relationships automatically. A GUI frontend supports specifying these tree struc-
tures. Auto-discovery of relationships determines the possible relation between
tables based on column names. In order to keep the IO operations to a minimum,
the joins are ordered such that smaller tables are joined first.

Left outer joins are performed in order not to lose any instances of the target
table. Since classifiers normally handle missing values, the created NULL values
can be interpreted as missing values. The columns over which the join is per-
formed (i.e. the columns that are tested in the WHERE clause of the generated
join-query) are determined by the intersection of the indices of the first table
with all the columns of the second one. The user can specify replacement values
for automatically generated NULLs on a column-basis (e.g. replacing them by
“0”) if they should not be treated as missing values. Such columns are updated
after a join-operation.

In cases where there are additional duplicate columns beside the join columns,
the duplicate columns’ names are prefixed with mX , where X is a unique number
used for all columns in the current join. Without that precaution potentially
essential information could be lost. A common case for this situation to arise is
the handling of asymmetric relationships, where the (initially identically named)
properties of both arguments have to be included in the final table.

Export The is the last step before the classifiers can be built and evaluated.
Tables generated by Proper are transformed into appropriate ARFF files for the
WEKA workbench. If certain columns contain implicit knowledge like identifiers
of tables (and their aggregates), it is possible to exclude them from export. In the
case of multi-instance data, a bag identifier can be specified explicitly or one can
be determined automatically. NULL values that were present in the data or were



introduced during left outer joins are exported as missing values. If the ARFF
file is too large it is possible to export only a stratified sample by specifying a
sampling percentage. Finally, WEKA filters can be applied to the data before
it is written to an ARFF file, e.g. nominal attributes can be turned into binary
indicator attributes.

3 Experiments

We used 18 datasets in our experiments with Proper.2 Table 1 shows the results.
Note that the alzheimer *, dd *, and proteins datasets only have one instance
per bag in the MILK and REMILK versions, so they are not “true” multi-
instance datasets.

For MILK and REMILKDataset RELAGGS MILK REMILK

alzheimer amine uptake 87.59 ± 4.31 73.35 ± 5.42 87.26 ± 4.52

alzheimer choline 89.18 ± 2.73 79.17 ± 3.68 89.45 ± 2.68

alzheimer scopolamine 87.84 ± 4.23 74.16 ± 5.30 87.78 ± 4.33

alzheimer toxic 92.93 ± 2.74 88.77 ± 3.48 92.39 ± 3.00

dd pyrimidines 92.47 ± 2.02 92.46 ± 1.94 92.46 ± 1.94

dd triazines 74.76 ± 0.85 74.78 ± 0.85 74.78 ± 0.85

eastwest 80.00 ± 41.03 55.00 ± 51.04 75.00 ± 44.42

genes growth 31.70 ± 1.60 34.00 ± 1.01 33.36 ± 1.25

genes growth bin 84.14 ± 0.42 84.33 ± 0.22 84.34 ± 0.40

genes nucleus 76.06 ± 2.15 57.22 ± 2.19 62.55 ± 2.03

genes nucleus bin 87.28 ± 1.39 74.13 ± 1.67 78.49 ± 1.63

musk1 rel 80.13 ± 15.21 81.64 ± 14.68 79.50 ± 14.58

musk2 rel 72.83 ± 13.44 76.82 ± 12.61 74.40 ± 13.73

mutagenesis3 atoms 79.58 ± 8.90 81.86 ± 8.23 80.15 ± 9.24

mutagenesis3 bonds 85.38 ± 7.85 83.62 ± 7.87 86.68 ± 7.46

mutagenesis3 chains 85.31 ± 7.83 84.54 ± 7.00 84.85 ± 8.32

proteins 59.52 ± 4.08 59.12 ± 5.08 59.92 ± 3.38

suramin 45.45 ± 52.22 63.63 ± 50.45 45.45 ± 52.22

Table 1. Accuracy and standard deviation.

we used the multi-instance
learner MIWrapper3, which
can be wrapped around any
standard propositional learner
as described in [1]. The MI-
Wrapper approach assigns each
instance of the n instances
in a bag a weight of 1/n. There-
fore all the bags have the same
total weight regardless of the
number of instances they con-

tain. For predicting a bag label a class probability is obtained from the propo-
sitional model for every instance of the bag. These probabilities are simply av-
eraged to determine the resulting class label for the bag.

This approach enjoys an advantage over ag-

Fig. 4. Artificial dataset.

gregation as performed by RELAGGS if the data
looks like that in Figure 4, i.e. if interactions be-
tween attributes are significant for prediction. Here
the aggregates generated by RELAGGS are iden-
tical for both classes, making discrimination im-
possible, but the MIWrapper algorithm would be
able to create a useful classifier, for example, using
a propositional decision tree learner.

We used unpruned decisions trees in our exper-
iments with RELAGGS and MILK/REMILK. Only for the genes * datasets we
used boosted decision stumps instead because the trees became too large. Both
learning schemes are insensitive to the relative scale of the instances’ weights and
that is why we used them. In all experiments we used 10 runs of stratified 10-fold
cross-validation, only in case of suramin and eastwest we used Leave-One-Out.
This was done because of the very small size of these datasets. Also, to imitate
RELAGGS’s behaviour, we binarized all nominal attributes before passing them
to the MIWrapper and replaced missing values in the resulting attributes by 0.

2 All the data used in our experiments is available from the Proper web page
http://www.cs.waikato.ac.nz/ml/proper.

3 The MIWrapper is part of MILK, the Multi-Instance Learning Kit, which is freely
available from http://www.cs.waikato.ac.nz/ml/milk/.



When interpreting the results shown in Table 1, we see that RELAGGS
and REMILK perform similarly (the exception being the gene nucleus * data,
where REMILK performs worse—possibly because the RELAGGS attributes
follow after the attributes from the multi-instance data in the REMILK version
of the data, and the decision tree learner is thus biased towards the latter set of
attributes). The results indicate that in practice one might as well run the faster
and less memory-demanding RELAGGS approach instead of the combination
approach REMILK.

MILK is performing as well as the other approaches on about two thirds of
all datasets, but it does worse on the remaining datasets. Currently we do not
have a good explanation for this difference, as we were actually expecting the
multi-instance approach to enjoy an advantage. But this theoretical advantage
(see the example discussed above) does not seem to be relevant in practice. Note
that the difference on the single-instance alzheimer * datasets is solely due to
the fact that the RELAGGS approach enables the propositional learner to treat
NULL effectively as a separate value rather than a missing value (because some of
the aggregate functions used by RELAGGS return zero if there are no applicable
records). This different treatment of missing values may be partially responsible
for the differences observed in other cases as well. There are no NULL values in
the musk datasets and here MILK actually has a slight edge.

4 Conclusions and Future Work

This paper presents an attempt to develop a practical database-oriented frame-
work for different propositionalization algorithms. The flexible design allows for
the future integration of other propositionalization algorithms in addition to
RELAGGS. Proper makes standard propositional and multi-instance learning
algorithms available for relational learning. A preliminary empirical investiga-
tion has shown the feasibility of this approach.

References

1. E. Frank and X. Xu. Applying Propositional Learning Algorithms to Multi-instance

data. Working Paper 06/03, Computer Science, University of Waikato, 2003.
2. M.-A. Krogel and S. Wrobel. Facets of Aggregation Approaches to Propositionaliza-

tion. In: T. Horváth and A. Yamamoto (Eds.) Proceedings of the Work-in-Progress
Track at the 13th International Conference on Inductive Logic Programming, 2003.

3. M.-A. Krogel, S. Rawles, F. Železný, P. A. Flach, N. Lavrač, and S. Wrobel. Com-

parative Evaluation of Approaches to Propositionalization. In: T. Horváth and A.
Yamamoto (Eds.) Proceedings of the 13th International Conference on Inductive
Logic Programming. LNCS 2835, Springer-Verlag, 2003.

4. P. Reutemann. Development of a Propositionalization Toolbox. MSc Thesis, Com-
puter Science, University of Freiburg, 2004.


