Welcome to Computing & Mathematical Sciences

We strive to challenge our students and are proud to see them emerge with qualifications that assist them along the path they have planned for their future.

Our aim is to prepare you for a wide variety of careers, equipping you with the skills for academic and professional success. We offer three and four-year degree undergraduate programmes that are professionally oriented, based on strong theoretical foundations. Our papers and qualifications are relevant and up-to-date in what is a rapidly changing technological and social environment.

World-class research underpins unique collaborations within our Faculty, across campus, and with the wider world. These collaborations bring together creative minds, unique technologies, and degree structures tailored to your interests and skills.

A qualification in computer science, mathematics, statistics, or computer graphic design can open many doors. Both in New Zealand and overseas, our former students are using their training to assume leadership roles in educational institutions and industry.

We welcome all of our potential new students, and look forward to seeing them complete their studies and go on to future success in their careers.

Professor Geoff Holmes
FACULTY OF COMPUTING & MATHEMATICAL SCIENCES
The information contained in this handbook is correct at the time of printing (August 2013). However, it is subject to a continuous process of review and improvement. A new handbook is produced in August/September every year and students should use the latest handbook available. The University’s document of authority for information contained in this handbook is the 2014 University of Waikato Calendar.
The Faculty of Computing & Mathematical Sciences is firmly committed to the principle of equal opportunities for all.

It is University policy to provide equal opportunities in both education and employment for all people regardless of factors that are irrelevant to their abilities, thereby deriving benefit from the overall pool of talent that exists in New Zealand society and contributing to its enrichment.

The Faculty is also committed to a policy of selection and appointment on the basis of merit. The interpretation of merit is comprehensive, and includes a diverse range of areas of experience and personal qualities as well as formal qualifications.

We seek a higher proportion of both Māori and people with disabilities in all areas of University life, and a more equal representation of genders, particularly at graduate level. There is recognition, too, that socio-economic situation and ethnic origins significantly affect access to university study. The University actively encourages participation from under-represented groups through student recruitment policies and student support services.

OVERVIEW OF QUALIFICATIONS

The Faculty of Computing & Mathematical Sciences offers the following undergraduate degrees:

1. BACHELOR OF COMPUTING & MATHEMATICAL SCIENCES (BCMS AND BCMS(Hons))
2. BACHELOR OF SCIENCE (BSc AND BSc(Hons))
3. BACHELOR OF ENGINEERING (HONOURS) (BE(Hons))
4. BACHELOR OF COMPUTER GRAPHIC DESIGN (BCGD AND BCGD(Hons))

Students interested in general degrees in Computer Science, Mathematics or Statistics should apply for either the BCMS or the BSc.
OVERVIEW OF QUALIFICATIONS

Transfers between the BSc and BCMS are easy and common. The advantage of the BCMS is access to an honours qualification and the higher level specialisation available in the fourth year.

Students interested in a professional engineering qualification in Software Engineering should apply for the BE(Hons).

Students interested in Computer Graphic Design should apply for the BCGD.

CONJOINT DEGREES

The Conjoint degree programme is a qualification that involves the completion of two degrees concurrently. Two examples are detailed below. For more information see the University Calendar.

BACHELOR OF TEACHING/BACHELOR OF SCIENCE (BTchg/BSc)

The professionally oriented BTchg degree enables students to become skilled and reflective teachers in New Zealand schools and build content knowledge in specific areas of the New Zealand Curriculum.

This programme is normally completed over four and a half years of full-time study and is available for secondary and primary teaching. Conjoint degree programmes are only available in Hamilton.

BACHELOR OF SCIENCE/BACHELOR OF MANAGEMENT STUDIES (BSc/BMS)

There is a need for BSc graduates with entrepreneurial and commercial skills and for managers with a firm understanding of how science works. Combining the study of innovation, technology and mathematics with management disciplines will give graduates increased employment opportunities and additional skills to succeed in the workplace. The Bachelor of Management Studies honours programme may be included in this degree.

DEGREE LENGTH

The BSc/BMS requires five years of full-time study or the equivalent in part-time study. The BSc/BMS(Hons) programme requires five and a half years of full-time study.

REQUIREMENTS

You will need to pass 640 points over approximately five years and the conjoint degree is usually available only within a major subject. A summary is shown on the following page.

OPPORTUNITIES FOR HIGH ACHIEVERS

The Faculty assists high achieving school leavers wishing to study at Waikato by offering:

- Challenge exams which, if passed, provide credit for key papers in computer science, mathematics and statistics, and earn direct entry to 200 level papers;
- First year scholarships through the Computer Science Scholarship Exam and also for an outstanding Statistics, Mathematics and Computer Graphic Design student (see pages 168-173);
- Prizes awarded by the Dean for the top 10 students in Levels 100, 200 and 300;
- Opportunities for excellent undergraduates to work during the summer in research labs; and
- Summer School papers to assist those wanting to accelerate their progress through a degree.

Changes to regulations can be found on the following website: http://calendar.waikato.ac.nz/regulations/index.html
CONJOINT DEGREES

BACHELOR OF SCIENCE/BACHELOR OF MANAGEMENT STUDIES (BSc/BMS)

SCIENCE

<table>
<thead>
<tr>
<th>Level</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
<th>Science Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MANAGEMENT

<table>
<thead>
<tr>
<th>Level</th>
<th>Management Major</th>
<th>Management Major</th>
<th>Management Major</th>
<th>Management Major</th>
<th>Management Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>STMC191</td>
<td>ACCT101</td>
<td>MKTG151</td>
<td>ECON100</td>
<td>STAT160</td>
</tr>
<tr>
<td>200</td>
<td>HEMG241</td>
<td>FINA201</td>
<td>ECON200</td>
<td>MNGT221</td>
<td>MCOM200</td>
</tr>
<tr>
<td>300</td>
<td>STMC391</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>400</td>
<td>XXXX499</td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>XXXX599</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL ENTRY REQUIREMENTS (BACHELORS DEGREES)

There are several ways you can gain admission to study at the University of Waikato: University Entrance, Admission at Entrance Level or with Credit from Previous Study, Discretionary Entrance and Special Admission.

If you gain University Entrance you are eligible to apply to enrol in the BCMS and BSc without any additional requirements. Note however, that for most students MATH102 Introduction to Algebra and STAT121 Introduction to Statistical Methods, are strongly recommended papers. Students who do not have an adequate background in mathematics will be required to enrol in preparation papers.

The BCGD and the BE(Hons) have additional entry requirements (check the undergraduate degree information on pages 30 and 66 in this handbook for additional information).

UNIVERSITY ENTRANCE FROM NCEA

You may have gained University Entrance from secondary school prior to 2004 or be sitting NCEA Level 3.

NCEA UNIVERSITY ENTRANCE STANDARDS

- 14 credits at Level 3 or higher in one approved subject.
- PLUS
- 14 credits at Level 3 or higher in a second approved subject.
- PLUS a FURTHER
- 14 credits at Level 3 or higher in not more than 2 additional domains on the NQF or "approved subjects".
- AND WITHIN or IN ADDITION to the ABOVE
- LITERACY AND NUMERACY REQUIREMENTS
 - 14 credits in Maths/Pāngarau at Level 1 or higher and
 - 8 credits in English or Te Reo at Level 2 (including 4 Reading and 4 Writing from the approved list).

A list of approved subjects and specifics of the literacy and numeracy requirements can be found online at www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/
GENERAL ENTRY REQUIREMENTS (BACHELORS DEGREES)

UNIVERSITY ENTRANCE FROM BURSARY
Three C grades or higher in the New Zealand University Entrance Bursaries and Scholarships examinations (NZUEBS) plus Higher School Certificate (HSC).

ADMISSION AT ENTRANCE LEVEL OR WITH CREDIT FROM PREVIOUS STUDY
New Zealand citizens and permanent residents who have studied overseas at secondary school or at tertiary level (in New Zealand or overseas) should apply for Admission at Entrance level. We will assess your study to determine whether it is an acceptable equivalent to the New Zealand University Entrance qualification.

Students who successfully complete the Certificate of University Preparation are eligible for admission at Entrance Level.

DISCRETIONARY ENTRANCE
Students under 20 without University Entrance: If you are 16 years of age or over and a New Zealand citizen or permanent resident, you may be eligible to apply for Discretionary Entrance.

Students are assessed on the basis of their academic background and an adviser’s recommendation. If you are still at school, or have left school recently, your school principal must be your adviser. If you have left school please contact the Student Recruitment Officer at the University. Email info@waikato.ac.nz or phone 0800 WAIKATO (0800 924 528).

GENERAL ENTRY REQUIREMENTS (BACHELORS DEGREES)

SPECIAL ADMISSION
Students aged 20 and over: If you left school without University Entrance and will be 20 years of age or over by the first day of the semester in which you are applying to enrol, you may apply for special admission.

Factors considered when granting special admission are: any other relevant study you might have undertaken; your general life experience and preparedness for university study; and if you have successfully completed a bridging course.

Members of the Faculty staff are available by appointment to discuss special admission.

ENGLISH LANGUAGE REQUIREMENTS FOR UNDERGRADUATE STUDY
All students whose application for admission is on the basis of study completed overseas where the medium of instruction is not English, are required to provide evidence of a satisfactory level of competence in the English Language. A TOEFL iBT score of 79-80 (with a writing score of 20) or an IELTS score of 6.0 (with at least 6.0 in the writing band) or above is considered to be evidence of such competence. Other evidence is considered on a case-by-case basis.

Undergraduate students with an IELTS score of less than 7.0 or 100 in TOEFL iBT will be required to enrol in (and pass) the paper ESLA101A/B Academic Writing and Research in their first semester of enrolment.

International students seeking admission via the University of Waikato Pathways College may be accepted on the basis of a B grade or higher at level 7 of the Pathways College English Language programme.

A higher standard of English will be required of students wishing to enter graduate study programmes.

All international students should apply through Student and Academic Services.

THE STUDENT CENTRE
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand
Phone: +64 7 838 4610 or 0800 WAIKATO (0800 924 528)
Fax: +64 7 838 4370
Email: info@waikato.ac.nz
The Faculty of Computing & Mathematical Sciences offers the following graduate and postgraduate qualifications:

- Bachelor of Science with Honours (BSc(Hons))
- Graduate Certificate (GradCert)
- Graduate Diploma (GradDip)
- Postgraduate Certificate (PGCert)
- Postgraduate Diploma (PGDip)
- Master of Computer Graphic Design (MCGD)
- Master of Cyber Security (MCS) *Subject to Universities New Zealand CUAP approval
- Master of Science (MSc)
- Master of Philosophy (MPhil)
- Doctor of Philosophy (PhD)

Most graduate programmes require candidates to have completed a bachelors degree with a major in the relevant subject (computer science, computer graphic design, software engineering, mathematics, or statistics).

ENGLISH LANGUAGE REQUIREMENTS FOR GRADUATE AND POSTGRADUATE STUDY

You are required to meet the English language requirements for admission into Graduate and Postgraduate qualifications. You are required to achieve an IELTS (academic stream) overall score of 6.5 with at least 6.0 in the writing band OR successfully complete the University of Waikato Pathways College English Language level 8 with a B grade or higher.

What follows is a brief description of each qualification. Precise details of the regulations can be found in the 2014 University of Waikato Calendar.
GRADUATE AND POSTGRADUATE QUALIFICATIONS

BACHELOR OF SCIENCE WITH HONOURS (BSc(Hons))

The BSc(Hons) is a one-year graduate qualification available to students who have completed a BSc at the University of Waikato, and who have reached a high standard in their major subject.

Intending candidates for the degree should discuss these requirements with the Graduate Adviser of the relevant department.

STRUCTURE

The programme of study consists of 120 points at 500 level, including a dissertation equivalent to 30 points. The degree will be awarded with First Class Honours, Second Class Honours (first division), Second Class Honours (second division) or Third Class Honours. It will not be awarded without Honours – a failure to reach the required level for Honours means that the degree as a whole is failed.

BSc(Hons) ENTRY REQUIREMENTS

Each subject has its own entry and programme requirements for the degree. For 2014 these are:

- Computer Science: Candidates will require an average grade of A- in at least 80 points at 300 level in Computer Science.
- Mathematics: Candidates will require a major in Mathematics in the BSc degree with an average grade of B in 80 points in 300 level Mathematics. There are no special paper requirements other than those implied by the BSc(Hons) degree regulations.
- Statistics: Candidates will require B+ grades of better in at least 60 points in 300 level Statistics in the BSc and must have passed the prerequisites for the 500 level papers they wish to enrol in.

GRADUATE CERTIFICATES AND DIPLOMAS

The Graduate Certificate (GradCert) is a qualification for graduates with at least a bachelors degree in any subject. The normal minimal time for completion of the GradCert is one semester. You will need to pass 60 points at 100 level or above, including at least 40 points at 300 level or above. At least 40 points must be in your subject area, Computer Science, Computer Graphic Design, Mathematics, or Statistics.

The Graduate Diploma (GradDip) is a qualification for graduates with at least a bachelors degree in any related subject. The normal minimal time for completion of the GradDip is one year. You will need to pass 120 points at 100 level or above, including at least 80 points at 300 level or above. At least 80 points must be in your subject area.

GRADUATE AND POSTGRADUATE QUALIFICATIONS

You should design your programme in consultation with one of the Certificate/Diploma Advisers in the relevant department. This can be done via email or phone for students outside of the local area. Once your programme has been discussed with the relevant adviser, you will need to submit it to the Faculty Office for formal approval by the Dean.

To enrol for a Graduate Certificate or Diploma you need to enrol by the relevant deadline. Applications received after the deadline will still be considered. Online application is available at www.waikato.ac.nz or email info@waikato.ac.nz

POSTGRADUATE CERTIFICATES AND DIPLOMAS

The Postgraduate Certificate (PGCert) is a qualification for graduates with at least a bachelors degree in a related subject, Computer Science, Mathematics, or Statistics. The normal minimal time for completion of the PGCert is one semester. You will need to pass 60 points at 500 level in your subject area, Computer Science, Mathematics, or Statistics.

The Postgraduate Diploma (PGDip) is a qualification for graduates with at least a bachelors degree in a related subject, Computer Science, Computer Graphic Design, Mathematics, or Statistics. The Postgraduate Diploma programme is well-suited for those who are not able to commit the two years required for an MSc. It normally takes one year of full-time study, but can also be taken part-time over an extended period. You will need to pass 120 points at 500 level with at least 90 points in your subject area, Computer Science, Computer Graphic Design, Mathematics, or Statistics.

You should design your programme in consultation with one of the Certificate/Diploma Advisers in the relevant department. This can be done via email or phone for students outside of the local area. Once your programme has been discussed with the relevant Adviser, you will need to submit it to the Faculty Office for formal approval by the Dean.

To enrol for a Postgraduate Certificate or Diploma, you need to enrol by the relevant deadline. Applications received after the deadline will still be considered. Online application is available at www.waikato.ac.nz or email info@waikato.ac.nz

THE STUDENT CENTRE

The Student Information Centre
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand

Phone: +64 7 838 4007 or 0800 WAIKATO (0800 924 528)
Fax: +64 7 838 4370
Email: info@waikato.ac.nz
GRADUATE AND POSTGRADUATE QUALIFICATIONS

MASTER OF COMPUTER GRAPHIC DESIGN (MCGD)

The MCGD is a one-year degree that stresses graphic design theory and original research. The MCGD is an opportunity to plan, develop and carry out a large scale design thesis realisation based on original research, collaboration with peers, members of the professional design industry and academic communities, in order to advance the body of design knowledge.

MCGD research is represented by both a written thesis and an exhibited design realisation. The written thesis and thesis realisation are two expressions of the same research and are thus assessed as a single unit. This arrangement reflects the symbiotic link between theory and practice in this discipline.

There is no option to take a written only or a realisation only MCGD. There is an option to take an approved taught paper alongside your research.

To enrol in the MCGD you must have completed the Bachelor of Computer Graphic Design (Honours) or equivalent. Contact CGD staff for help choosing a supervisor, topic and writing your proposal. Enrolment in the MCGD can be completed online at www.waikato.ac.nz or email info@waikato.ac.nz.

MASTER OF CYBER SECURITY (MCS)

Subject to Universities New Zealand CUAP approval

The MCS introduces students to the frontiers of knowledge and trains them in the relevant techniques of cyber security. Students will gain an advanced understanding and knowledge of cyber security from the point of view of preventative security, detection of security breaches, and offensive security (such as computer system penetration testing). At the same time, students will gain an advanced understanding and knowledge of cloud computing technologies, computer infrastructure, legal aspects of cyber security and a capacity to think innovatively and be able to use research-led knowledge to advance professional practice.

The MCS is normally an 18-month postgraduate degree building on the computer science major at undergraduate level. Very able students and those who already have an honours degree or a postgraduate diploma may be able to complete it in 12 months, subject to the Dean's approval. For admission to the MCS, students will need to have completed a relevant bachelor's degree or postgraduate diploma, normally in Computer Science or in Computer Engineering. They will need an average of at least a B+ in their 300 level or higher Computer Science papers (or equivalent subject).

If you are entering with a three-year bachelor's degree, the MCS consists of 180 points of 500 level papers made up of 120 points of 500 level taught papers and a 60-point dissertation. If you have an honours degree or a postgraduate diploma and have done study equivalent to 15 points of the compulsory papers, you will require a total of 120 points for the qualification including a 60-point dissertation. Dissertations may be co-supervised with relevant IT or security institutions in New Zealand. For the MCS, very capable students may opt for a research-intensive 90-point thesis as an alternative to the 60-point dissertation, subject to the Dean's approval.

You will need to discuss and plan your actual programme of study – that is, the papers you are going to take and the area of cyber security in which you plan to write a dissertation – with the Graduate Adviser from the Department of Computer Science. We will go over your entire proposed programme of study with you. The outcome of the discussion will be recorded on a programme form, which is different from the University

GRADUATE AND POSTGRADUATE QUALIFICATIONS

enrollment form. If you cannot come to the University in person, we can discuss your proposed programme by email or on the phone.

THE STUDENT CENTRE

The Student Information Centre
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand

Phone: +64 7 838 4007 or 0800 WAIKATO (0800 924 528)
Fax: +64 7 838 4370
Email: info@waikato.ac.nz

To enrol for a MCS degree, you can apply online by going to www.waikato.ac.nz/enrol or visit iWaikato. Once your supervisor, proposal and optional taught paper have been decided you can go ahead and enrol online.

MASTER OF SCIENCE (MSc)

To enrol in an MSc you must have completed (or almost completed) a bachelor's degree with a major in the relevant subject (software engineering, computer science, mathematics, or statistics) and attained good enough grades for advanced study. If you have a bachelor's degree in a non-relevant subject, and then complete an appropriate Graduate Diploma, you may be accepted into an MSc.

The MSc is a two-year degree, consisting of 240 points at 500 level. The normal pattern is to gain 120 points in the first year, then complete a 120 point thesis in the second. The thesis must comprise a satisfactory record of research undertaken by the candidate, or a satisfactory critical survey of knowledge in the approved field of study. It must show competence in the appropriate method of research and/or an adequate knowledge of the field of study; exhibit independence of approach or presentation; be satisfactory in literary presentation; and include full reference to the literature.

The degree may be awarded with or without honours. To be eligible for honours, you must complete the requirements of the degree and submit your thesis in no more than two years of full-time study (or the equivalent for part-time enrolment).

If you have a BCMS(Hons), BSc(Hons) or PGDip you may be eligible to enter directly into the second year of the MSc. In Computer Science, the normal route to enrol in an MSc is to substitute a Postgraduate Diploma (PGDip) for the first year of MSc study.

You will need to discuss the choice of your actual programme of study – that is, the papers you are going to take and the area in which you plan to write a thesis – with the Adviser from the relevant department. We will go over your entire proposed graduate programme with you, not just the papers you plan to take in the first year. The outcome of the discussion will be recorded on a programme form, which is different from the University enrolment form. If you cannot come to the University in person, we can discuss your proposed programme by email or on the phone.

To enrol for an MSc degree, you can enrol online by going to www.waikato.ac.nz/enrol or visit iWaikato.
GRADUATE AND POSTGRADUATE QUALIFICATIONS

MASTER OF BUSINESS AND MANAGEMENT

Our specially designed qualification for graduate students who want to successfully enter today’s fast-changing international corporate environment.

While the MBA builds on management experience, the MBM provides comprehensive training in management that will complement your undergraduate degree from any discipline. The MBM will give you the skills and knowledge required for a wide range of management and leadership roles in a modern economy.

The MBM is designed to ensure that your learning experience is challenging and rewarding. Significant emphasis is placed on reflective learning, creative problem-solving and leadership in an international context.

LEARNING GOALS

The Waikato Management School has set learning goals and objectives as part of its continuous improvement activity. These goals are expressions of the expected outcomes for graduates who undertake our programmes. These goals are expressed in the Overview – Programmes of Study and Learning Goals section.

DEGREE REQUIREMENTS

The completion requirements for this degree are dependent upon your admission criteria.

If your admission was based upon having a bachelor’s degree then you must:

» Pass 240 points at 500 level as prescribed in the planner
» Pass all papers and achieve at least a B+ grade average over Part One (see note below).

Note(s): If a B+ grade average is not achieved then you may be eligible to graduate with a Postgraduate Diploma in Management, but you will not be permitted to continue with the MBM.

If your admission was based upon having a BMS(Hons) then you must:

» Pass 120 points at 500 level in the papers prescribed in the planner.

If you fail any paper then you may be required to undertake additional assessment to improve your grade to a pass on one occasion only. If you fail more than once then you will not be permitted to proceed with the degree.

DISTINCTION

If you achieve at least an A grade point average for your papers you may be awarded the MBM with distinction.

CONTACT DETAILS

You can find out more about Corporate & Executive Education on our website: www.exced.ac.nz

CORPORATE & EXECUTIVE EDUCATION

Waikato Management School
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand

Phone: +64 7 838 4198 or 0800 800 891
Fax: +64 7 838 4675
Email: exced@waikato.ac.nz
GRADUATE AND POSTGRADUATE QUALIFICATIONS

If you are not a Waikato University student, you will need a combined application and enrolment form. The Faculty Office can provide this form, or you may request one from the Admissions Office by writing or telephoning The Student Information Centre (see below for details).

THE STUDENT CENTRE

The Student Information Centre
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand

Phone: +64 7 838 4007 or 0800 WAIKATO (0800 924 528)
Fax: +64 7 838 4370
Email: info@waikato.ac.nz

If you need any help in filling in the required information on your prior education and experience, or are not sure what documentation you need to supply with the form, please contact The Student Information Centre.

Once your programme of study has been decided, and the Departmental programme form and the University enrolment forms are filled in, please leave them with the Faculty of Computing & Mathematical Sciences Office. We will then send your enrolment application through the appropriate University channels.

DOCTOR OF PHILOSOPHY (PhD)

To enrol for a PhD you normally need an honours degree with first or second-class honours (first division).

A PhD involves advanced study and research under the direction of a supervisor for at least two years (full-time). You write a thesis on an original investigation relating to some branch of your chosen subject (computer science, mathematics or statistics). It is unlikely that your research will be completed in the two year minimum time — normally you would expect to take at least three years.

Although the PhD does not normally involve coursework, you may be required to take up to two preliminary papers. More details on the PhD regulations and general guidelines can be found in the Higher Degrees Handbook which can be obtained from the Postgraduate Studies Office, or online in PDF format from the website.

Enrolment of all new candidates for the PhD approved by the Postgraduate Studies Committee is conditional for an initial period of six months. Confirmation of enrolment by the Postgraduate Studies Committee after the initial period of six months is subject to the submission by the candidate of:

» An acceptable research plan, and
» A formal presentation to a Confirmed Enrolment Panel, and
» A report by the supervisors recommending confirmation of enrolment, and
» Evidence of ethical approval or a statement confirming that it is not required, in accordance with the Ethical Conduct in Human Research and Related Activities Regulations 2008.

Visit: www.waikato.ac.nz/sasd/postgraduate
GRADUATE AND POSTGRADUATE QUALIFICATIONS

The next step is to fill out an application form for the PhD/MPhil degree. This is an application to the Postgraduate Studies Committee for registration. It will include a synopsis of the research project you intend to tackle. Your supervisor will help you to come up with a suitable description of the proposed research. Once the Postgraduate Studies Committee has approved your admission to the programme, you must then fill in a standard University of Waikato enrolment form so that the Academic Services Division can record the necessary information. For more information about the formal side of the registration process, please contact the Postgraduate Studies Administrator.

SOURCES OF FUNDING

GENERAL FUNDING SOURCES

Here are a few of the most common sources of funding available for postgraduate study.

For a more complete list, consult the website: www.waikato.ac.nz/scholarships

NEW ZEALAND CITIZENS AND PEOPLE WITH PERMANENT RESIDENCE

For New Zealand citizens and people with permanent residence, the following sources of funding may be available:

University of Waikato Masters Research Scholarships: These awards provide one year of funding for students commencing the second or final year of a full-time masters degree at the University of Waikato. The awards are made on academic merit and the minimum average grade required for application is an A- (75%). Application forms are available from the Scholarships website: www.waikato.ac.nz/scholarships

University of Waikato Doctoral Scholarships: These awards provide three years of funding for students undertaking a full-time Doctoral degree at the University of Waikato. The awards are made on academic merit and the minimum average grade required for application is an A- (75%). Application forms are available from the Scholarships website: www.waikato.ac.nz/scholarships

All New Zealand universities have copies of the Universities New Zealand Scholarships Handbook and you should arrange to see a copy if you would like detailed information on the wide variety of scholarships and awards available nationally, or visit UNZ website: www.universities.ac.nz

OVERSEAS STUDENTS

International (non-New Zealand resident) students can apply for a “New Zealand Scholarship” funded by the New Zealand Government or for scholarships funded by their own country. A very limited number of Computer Science Department Scholarships may also be available.

To apply for a New Zealand scholarship visit: www.newzealandeducated.com/scholarships/homepage.html

To apply for a Computer Science Department scholarship send your CV and the research area you wish to work in to cs@waikato.ac.nz

Note(s): Computer Science Department scholarships will normally only be awarded to top students working in already established Computer Science Department research areas (see pages 91–101).

University of Waikato International Doctoral Scholarships: These awards provide three years of funding for students undertaking a full-time Doctoral degree at the University of Waikato.

The awards are made on academic merit and the minimum average grade required for application is an A- (75%). Application forms are available from the Scholarships website: www.waikato.ac.nz/scholarships

GRADUATE FEES

University fees are reviewed annually and information on current fees is available on the website.

Visit: www.waikato.ac.nz/sasd/enrolment/fees.shtml

For overseas students, in addition to tuition fees, you will also need sufficient funds to cover your living expenses in New Zealand for the duration of your programme.

New international PhD students are eligible for domestic fees for their PhD studies. Conditions apply.

For more information see the Postgraduate Studies Office website: www.waikato.ac.nz/sasd/postgraduate

POSTGRADUATE STUDIES ADMINISTRATOR

Postgraduate Studies Office
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand
Phone: +64 7 838 4466 Extn: 6337
Fax: +64 7 838 4130
Email: postgrad@waikato.ac.nz
Web: www.waikato.ac.nz/sasd/postgraduate
SOURCES OF FUNDING

If you live in one of the 60 member countries involved in the Commonwealth Scholarship and Fellowship Plan, you may apply in your own country for a Commonwealth Scholarship to be taken up at the University of Waikato. If you do have a scholarship, or other funds, that will allow you to cover the cost of your education, then we encourage you to apply to enter our graduate programme.

COMPUTER SCIENCE DEPARTMENT SCHOLARSHIPS

The Computer Science Department awards graduate student funding packages to selected students. These are allocated on a competitive basis and the number of scholarships varies from year to year depending on available funding.

COMPUTER SCIENCE DEPARTMENT GRADUATE ASSISTANTSHIPS

Selected students may receive Graduate Assistantships. Again, these are allocated on a competitive basis. A graduate assistant receives $7,125 per year for a total of 256 hours work.

SCHOLARSHIPS OFFICE

The Scholarships Office is located in the Gateway and provides advice and administration services and information about available scholarships.

OTHER SOURCES OF INFORMATION

The University Calendar is available from bookshops and libraries and on the website at: http://calendar.waikato.ac.nz
COMPUTER GRAPHIC DESIGN – INTRODUCTION

In line with new international developments in computer graphic design education, the Bachelor of Computer Graphic Design at Waikato encourages students to reach beyond the boundaries of traditional graphic design and explore the huge potential of the digital environment.

The Bachelor of Computer Graphic Design combines highly creative design and visual communication papers with computer programming papers from our Computer Science department. The intention is to empower a new generation of designers with the ability to redefine the boundaries of graphic design by working across mediums and linking powerful visual communication with effective, innovative use of technology.

This style of qualification is in increasing demand both within New Zealand and internationally. This follows the now widespread use of computers in the design profession, and the enormous growth of the internet, the worldwide web, and electronic commerce, entertainment, education and interactivity. The qualification meets the ever-increasing demand for high quality cross media design expertise. The structure of the programme has been developed in collaboration with the design industry, with an eye to both international and local markets seeking students with on and offline media experience.

In the first year, students have the opportunity to develop a firm foundation in the core elements and principles of design, in both two and three dimensions. They also learn essential techniques that will assist them in broadening their visual and verbal skills. The second year offers motion graphics and the chance to explore the relationship between visual communication and screen-based technologies. By the time students enter the third year they are ready to push the boundaries of visual communication, taking on the more professional challenges of internship as well as complex, cross media projects.

CAREER OPPORTUNITIES

The skills students will gain from this programme can lead to work in a variety of areas including:

» Advertising and Branding
» Computer Games
» Computer Illustration
» Interactive Media
» Motion Graphics
» Multimedia Content Creator
» Television Production
» User Experience
» Web Design and Development

COMPUTER GRAPHIC DESIGN STAFF

SENIOR LECTURER

Tomás García Ferrari
Specialist in Communication Design Theory
UBA Argentina
Email: tomasgf@waikato.ac.nz
Typography, interaction design, design thinking, complexity.

LECTURERS

Simon Laing
BCGD(Hons) MCGD UCOL/Waik
Email: simond@waikato.ac.nz
Interactive media; graphic design.

Keith Soo
DipMM NAFA BCGD(Hons) MCGD UCOL/Waik
Email: cekst@waikato.ac.nz
Motion graphics; interactive and web media; graphic design.

Claire Timpany
BCGD(Hons) MCGD UCOL/Waik
Email: ctimpany@waikato.ac.nz
Publication and interaction design, typography.

Emmanuel Turner
PCDipCGD Wang MCGD UCOL/Waik
Email: eturner@waikato.ac.nz
Internet design; technology and culture.

Nicholas Vanderschantz
BCGD(Hons) MCGD UCOL/Waik
Email: vtwoz@waikato.ac.nz
Typography in learning and education; photography; internet design.

Artwork: Jessamy Topping, First Year BCGD work. Poster describing the principle of balance in graphic design.

Artwork: Joshua Herbes, First Year BCGD work. Poster describing the principle of balance in graphic design.
ENTRY REQUIREMENTS FOR THE BCGD

If you have University Entrance you are eligible to apply for this degree. Ideal NCEA subject credits would include Art (Design, Painting, Photography, Sculpture or Printmaking), or Graphics and Design. Because of the computer programming component in the degree, if you do not have at least 14 credits in NCEA Level 2 Mathematics you may be offered a supporting mathematics paper. A good standard of English is also important.

A selection process applies and you must submit 10 portfolio pieces. Submit your portfolio with your application form. The portfolio pieces are submitted to demonstrate your creative and visual communication abilities. You may be required to attend an interview in Hamilton with CGD teaching staff.

Each application will be considered on a case-by-case basis. If necessary we can give you advice on suitable bridging courses.

BCGD PORTFOLIO SUBMISSION

BCGD applicants are required to submit a portfolio on A3 paper with their enrolment application. We will not be evaluating your design abilities as these skills will be taught during the degree. We are interested in seeing your creative ideas, originality, curiosity and imagination, and how you implement this within your creative visual work.

The portfolio of creative work (10 items) should include finished pieces and pieces still under development. We would like to see work in progress or work developed during planning a project as well as finished work to help us understand your creative-thinking process.

The items might include:

» Drawings
» Computer-generated images
» Sketches
» Photography
» Websites
» Animation
» Painting
» Sculpture
» Fashion
» Digital story-telling
» Etc

You can submit your portfolio as printed copies of work, as digital files or a combination of both.

Please do not submit originals. Original pieces can be photographed and submitted as digital files on a CD or DVD, with individual works clearly labelled.

Each of the 10 pieces should be accompanied by a short (100 word max.) description of the work and its purpose and process of production.

Please send your portfolio to: Receptionist, The Faculty of Computing & Mathematical Sciences, The University of Waikato, Private Bag 3105, Hamilton 3240.

BCGD PROGRAMME

100 LEVEL

CGRD141 Design 1 (15 points)
CGRD142 Design 2 (15 points)
CGRD143 Graphic Design Study (15 points)
CGRD151 A History of Visual Communication (15 points)
COMP125 Visual Computing (15 points)
COMP126 Computing Media (15 points)
COMP103 Introduction to Computer Science 1 (15 points)
Plus one 100 level elective paper.

200 LEVEL

CGRD241 Computer Graphic Design 1 (20 points)
CGRD242 Computer Graphic Design 2 (20 points)
CGRD252 Studies in Visual Communication (20 points)
Plus 40 points from:
COMP223 Information Discovery (20 points)
COMP233 Internet Applications (20 points)
COMP258 Programming Usable Systems (20 points)
COMP278 Interactive Computing (20 points)
Plus one 200 level elective paper.

300 LEVEL

CGRD343 Computer Graphic Design 3 (20 points)
CGRD344 Computer Graphic Design 4 (20 points)
CGRD350 Intern Project (20 points)
CGRD360 Degree Project (20 points)
Plus 20 points from:
COMP324 Interactive Multimedia Systems (20 points)
COMP325 Human-Computer Interaction (20 points)
COMP336 Graphics and Computer Games (20 points)
Plus one 300 level elective paper.
COMPUTER GRAPHIC DESIGN PAPERS

Computer Graphic Design papers provide specialised professional education in computer graphic design, a creative process that utilises art and technology to communicate ideas. The papers offered comprise a core of basic design material and skills, together with contemporary computer software understanding and experience and a context of design history and liberal arts. The specified programme for the BCGD comprises 360 points.

100 LEVEL PAPERS

CGRD141-14A (HAM) Design 1
15 points
This paper explores topics related to creativity using basic elements and principles of design to raise students’ aesthetic awareness and develop their critical judgement. The process also teaches students to look at, see and interpret their environment in original ways. Students will work in both traditional and digital media.
Corequisite Paper(s) CGRD143 and COMP125.
Restricted Paper(s) CGRD161.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is only available to BCGD students. Enrolment is limited to 80 students.

CGRD142-14B (HAM) Design 2
15 points
This paper follows closely from CGRD141 by allowing students to apply their learning in set projects and assignments. The emphasis is on process, creativity and developing confidence and personal expression. The paper also provides an introduction to typography.
Corequisite Paper(s) COMP126.
Prerequisite Paper(s) CGRD141 and CGRD143.
Restricted Paper(s) CGRD161.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is only available to BCGD students. Enrolment is limited to 70 students.

CGRD143-14A (HAM) Graphic Design Study
15 points
This paper involves theory, informed experimentation and practice. It is designed to broaden students’ visual vocabulary and improve technical expertise in the area of perceptual drawing, key aspects of colour in design, and the creation of effective photographic images for graphic design.
Corequisite Paper(s) CGRD141 and COMP125.
Restricted Paper(s) CGRD165 and CGRD166.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): Enrolment is limited to 90 students.

CGRD151-14B (HAM) A History of Visual Communication
15 points
Students consider the role of visual communication design in society and culture, from the evolution of writing to the revolutions of 20th century modernism, through the study of visual images and critical theory.
Ellen Lupton, Abbott Miller, Design Writing Research: writing on graphic design, Phaidon, 1999.
Assessment Internal assessment/Final examination ratio 1:0.

CGRD161-14B (HAM) Effective Visual Communication
15 points
Students develop practical knowledge and awareness of style and aesthetics in visual communication design. Skills are taught in industry standard software to produce effective personal, printed outcomes using typography and image.
Restricted Paper(s) CGRD141 and CGRD142.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is a requirement for the BMCT degree.

CGRD165-14A (HAM) Graphic Design Study
5 points
This paper involves theory, informed experimentation and practice in photography, drawing or colour theory.
Restricted Paper(s) CGRD143 and CGRD166.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is only available to GradCert(CGD) or GradDip(CGD) students.

CGRD166-14A (HAM) Graphic Design Study
10 points
This paper involves theory, informed experimentation and practice in two areas from photography, drawing or colour theory.
Restricted Paper(s) CGRD143 and CGRD165.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is only available to GradCert(CGD) or GradDip(CGD) students.

COMP103-14A (HAM) & 14B (HAM) Introduction to Computer Science 1
15 points
This paper introduces computer programming in C# – the exciting challenge of creating software and designing artificial worlds within the computer. It also covers concepts such as the internals of the home computer, the history and future of computers, how computers are changing society, and current research and challenges in computing.
Assessment Internal assessment/Final examination ratio 2:1 or 1:2, whichever works in your favour. The practical programme must be completed to the satisfaction of the co-ordinator for the paper.
COMPUTER GRAPHIC DESIGN PAPERS – 100/200 LEVEL

COMP125-14A (HAM) Visual Computing

15 points

This paper enables students to perform basic computing operations and to operate software packages for the manipulation of visual images and text for use in print and screen-based applications. Students will be introduced to basic computing concepts and provided with software tutorials and related exercises.

Assessment

Internal assessment/Final examination ratio 1:0.

COMP126-14B (HAM) Computing Media

15 points

In this paper students will create multimedia web content using appropriate software packages. Web design concepts will be introduced for the effective use of text, images and sounds. Students will be introduced to relevant computing concepts and provided with software tutorials and related exercises.

Assessment

Internal assessment/Final examination ratio 1:0.

CGRD242-14B (HAM) Computer Graphic Design 2

20 points

This paper will enable students to experiment with the application of design principles and research to problem-solving exercises and assignments and synthesise design skills with computer-based applications. It will enable students to operate with skill and expertise the range of software that will be required for completion of assignments and be aware of hardware structure and the functions of its components in relation to specific hardware.

Prerequisite Paper(s)

CGRD241 and COMP126.

Assessment

Internal assessment/Final examination ratio 1:0.

Note(s): This paper is only available to BCGD students.

CGRD252-14A (HAM) Studies in Visual Communication

20 points

In this paper students explore critical themes in visual communication design from the 1960s onwards. Topics are variable and may include New Zealand identity; propaganda design; new media and new models of communication.

Prerequisite Paper(s)

CGRD151 or CGRD161.

Restricted Paper(s)

CGRD353.

Required Books

Ellen Lupton, Abbott Miller, Design Writing Research: writing on graphic design, Phaidon, 1999.

Assessment

Internal assessment/Final examination ratio 1:0.

COMP223-14A (HAM) & 14B (HAM) & 14S (HAM) Information Discovery

20 points

This paper can be taken as a follow on to COMP123 The Computing Experience or directly by students with prior experience at using computers. The paper provides an opportunity to widen your experience of computer software. It is based on an intensive laboratory programme, where you are able to tailor the paper to your own needs and interests by selecting an appropriate set of modules.

Modules include: video editing, information presentation, exploitation of information sources, computer game construction, animation and 3D modelling. Please note that module availability may vary depending on resources.

Prerequisite Paper(s)

No prerequisite papers but assumes prior experience at using computers.

Assessment

Internal assessment/Final examination ratio 1:0.

CGRD224-14A (HAM) Visual Design for Interactive Media

20 points

This paper is a practical study of computer graphic design principles; covering topics such as graphic design techniques, typography, colour, digital images, designing for computer displays and the web.

Prerequisite Paper(s)

One of CGRD161 or COMP104 or COMP126.

Restricted Paper(s)

COMP224 and CGRD241.

Assessment

Internal assessment/Final examination ratio 1:0.

CGRD241-14A (HAM) Computer Graphic Design 1

20 points

This paper challenges students to combine their typographic skills and their knowledge of principles of design in order to practically solve design problems. A combination of exercises and assignments involving research and basic visual communication using type and image will synthesise these design skills. Throughout the paper the arrangement of typography is treated formally and expressively within specified guidelines.

Prerequisite Paper(s)

CGRD142.

Assessment

Internal assessment/Final examination ratio 1:0.

Note(s): This paper is only available to BCGD students.

CGRD242-14B (HAM) Computer Graphic Design 2

20 points

This paper will enable students to experiment with the application of design principles and research to problem-solving exercises and assignments and synthesise design skills with computer-based applications. It will enable students to operate with skill and expertise the range of software that will be required for completion of assignments and be aware of hardware structure and the functions of its components in relation to specific hardware.

Prerequisite Paper(s)

CGRD241 and COMP126.

Assessment

Internal assessment/Final examination ratio 1:0.

Note(s): This paper is only available to BCGD students.

CGRD252-14A (HAM) Studies in Visual Communication

20 points

In this paper students explore critical themes in visual communication design from the 1960s onwards. Topics are variable and may include New Zealand identity; propaganda design; new media and new models of communication.

Prerequisite Paper(s)

CGRD151 or CGRD161.

Restricted Paper(s)

CGRD353.

Required Books

Ellen Lupton, Abbott Miller, Design Writing Research: writing on graphic design, Phaidon, 1999.

Assessment

Internal assessment/Final examination ratio 1:0.

COMP223-14A (HAM) & 14B (HAM) & 14S (HAM) Information Discovery

20 points

This paper can be taken as a follow on to COMP123 The Computing Experience or directly by students with prior experience at using computers. The paper provides an opportunity to widen your experience of computer software. It is based on an intensive laboratory programme, where you are able to tailor the paper to your own needs and interests by selecting an appropriate set of modules.

Modules include: video editing, information presentation, exploitation of information sources, computer game construction, animation and 3D modelling. Please note that module availability may vary depending on resources.

Prerequisite Paper(s)

No prerequisite papers but assumes prior experience at using computers.

Assessment

Internal assessment/Final examination ratio 1:0.
COMPUTER GRAPHIC DESIGN PAPERS – 200 LEVEL

COMP233-14B (HAM) Internet Applications
20 points
This paper provides a broad overview of the principles and technologies used in Internet Applications, with practical experience of client-side and server-side programming.

Topics covered include:
» Web page creation and styling using HTML and CSS.
» Protocols and standards supporting Internet Applications design and security issues.
» Client-side and server-side programming, with practical work in JavaScript and PHP.
» Database-driven web applications.

Prerequisite Paper(s) COMP103.
Assessment Internal assessment/Final examination ratio 2:1.

COMP258-14A (HAM) Programming Usable Systems
20 points
The objectives of this paper are:
» To enhance students’ software development skills, particularly with respect to object-oriented software design and implementation.
» To develop students’ skills in designing interactive software for users, with a focus on graphical user interface design.

The paper develops the basic programming expertise gained in COMP103, and introduces issues of software usability. The paper is practically oriented, with laboratory sessions, problem-solving tutorials and small to medium-sized project work providing opportunity for application of newly-learned skills and techniques. Object-oriented software development techniques (including use-case analysis, object modelling and implementation) will be addressed, and aspects of designing usable software (including prototyping, design principles, component use, layout and feedback) will be introduced.

Prerequisite Paper(s) COMP103.
Restricted Paper(s) COMP203 and COMP241.
Assessment Internal assessment/Final examination ratio 1:1.

COMP278-14A (HAM) & 14B (HAM) & 14S (HAM) Interactive Computing
20 points
Students select from a variety of themes, including 3D modelling and animation; video editing; information presentation; computer game construction; human-computer interaction; and object-oriented software development.

Prerequisite Paper(s) COMP103 or COMP123.
Assessment Internal assessment/Final examination ratio: 1:0.

COMPUTER GRAPHIC DESIGN PAPERS – 300 LEVEL

300 LEVEL PAPERS

CGRD343-14A (HAM) Computer Graphic Design 3
20 points
This paper enables students to apply design elements and principles to multiple digital and physical projects. Students will be encouraged to bring skills gained in other papers to their projects. Students will also undertake an exploration of typography created by electronic means and targeted for existence in electronic space as an integral component of time based media production.

Prerequisite Paper(s) CGRD242.
Assessment Internal assessment/Final examination ratio 1:0.

CGRD344-14B (HAM) Computer Graphic Design 4
20 points
This paper enables learners to apply principles of design and design elements to systematic information hierarchies, environmental graphics, advanced publications and multimedia documents. This paper will allow students to explore the relationship between theory and practice, including their own practice, as well as provide methodology and support for research in design.

Prerequisite Paper(s) CGRD343.
Assessment Internal assessment/Final examination ratio 1:0.

CGRD350-14A (HAM) Intern Project
20 points
This paper will induct the design student into the professional environment where the student applies two and three dimensional computer graphic design skills, research methodology and production skills to allocated projects. The relationship between the student and the client is monitored and guided by an adviser who also supervises and guides the student in designing and co-ordinating aspects of the project.

Prerequisite Paper(s) (CGRD242 or CGRD224 or COMP224) and at least one of COMP223, COMP233, COMP258 or COMP278.
Assessment Internal assessment/Final examination ratio 1:0.

Note(s): This paper is available to BCGD and BMCT (Design Media) students; admission for students in other degree programmes is by permission of the Chairperson of Computer Science.

CGRD353-14A (HAM) Advanced Studies in Visual Communication
20 points
In this paper students explore critical themes in visual communication design from the 1960s onwards. Topics are variable and may include New Zealand identity; propaganda design; new media and new models of communication.

Prerequisite Paper(s) CGRD151.
Restricted Paper(s) CGRD252.
Assessment Internal assessment/Final examination ratio 1:0.
COMPUTER GRAPHIC DESIGN GRADUATE STUDY – INTRODUCTION

Graphic design is everywhere in our world today, on almost every surface, material or digital – that we touch and see; conveying messages from commerce, education, government and society; entertaining us, interacting with us. In the midst of emerging media, liquid culture and accelerating technology, graphic design makes coherent communication possible.

Graphic design at a graduate level applies theory and practice to communication aesthetics. Computer graphic design at The University of Waikato is unique in New Zealand as a specialist graphic design qualification that offers both visual design and computer science from the country’s No.1 Computer Science Department.

Graduate level study in computer graphic design is an opportunity to plan, develop and carry out a large-scale design project supported by original research. Topics are tailored to suit the aspirations of the individual student and therefore provide an opportunity for honing a particular aspect of graphic design further.

We currently offer a Bachelor of Computer Graphic Design with Honours (BCGD(Hons)) and a Master of Computer Graphic Design (MCGD).

BCGD graduates wanting parity with an international four-year BFA can take the BCGD(Hons).

Graduate students have a dedicated lab space and access to all of our undergraduate facilities. This includes high-end Apple computers running the latest industry standard software. Staff supervisors are friendly and very accessible. We welcome both New Zealand and international students.

ENGLISH LANGUAGE REQUIREMENTS FOR INTERNATIONAL STUDENTS

You are required to meet the English language requirements for admission into Graduate and Postgraduate qualifications. You are required to achieve an IELTS (academic stream) overall score of 6.5 with at least 6.0 in the writing band OR successfully complete the Waikato Pathways College English Language level 8 with a B grade or higher. Contact us to discuss graduate study options, email: gradinfo@cs.waikato.ac.nz

REQUIREMENTS FOR THE GradDipCGD, PGDip and MCGD

Students seeking entry to graduate qualifications should have a bachelors degree and/or relevant experience in a related discipline. Applicants for the Masters of Computer Graphic Design should have the BCGD(Hons) or equivalent.

Applicants who have not completed another graphic design qualification at the University of Waikato must submit a portfolio of creative work with their applications. The portfolio of creative work (7-20 items) should include finished pieces and pieces still under development, to help us understand your creative-thinking process.

You can submit your portfolio as printed copies of work, as digital files or a combination of both. Please do not submit originals. Original pieces can be photographed and submitted as digital files on a CD or DVD, with individual works clearly labelled. Each of the 7-20 pieces should be accompanied by a short (100 word max.) description of the work and its purpose and process of production.

Graduate programmes are highly tailored to the needs of the student. Acceptance to graduate programmes requires an agreed upon programme of study and, in the case of the honours and masters, a supervisor.

Please contact gradinfo@cs.waikato.ac.nz to discuss study options.

SECTION 2 | COMPUTER GRAPHIC DESIGN

COMPUTER GRAPHIC DESIGN PAPERS – 300 LEVEL

CGRD360-14B (HAM) Degree Project
20 points
This paper is an opportunity for students to plan, develop and carry out a small scale design project with relative independence. Students are encouraged to collaborate with peers in the learning environment and with members of the professional design industry and/or academic community. An adviser will supervise and guide the student through their project. This paper should form part of your final semester of study.

Prerequisite Paper(s) CGRD343 and CGRD350.
Restricted Paper(s) CGRD361.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is only available to BCGD students. Enrolment is limited to 60 students.

CGRD361-14B (HAM) Portfolio Preparation
20 points
This paper is an opportunity for students to develop and refine a professional portfolio showcasing their graphic design work.

Restricted Paper(s) CGRD360.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s): This paper is only available to GradCert(CGD) or GradDip(CGD) students. Enrolment in this paper is limited to 10 students.

COMP324-14A (HAM) Interactive Multimedia Systems
20 points
This paper introduces interactive multimedia systems, covering topics such as design, development and evaluation of multimedia applications. Students will acquire a theoretical and practical understanding of interactive multimedia systems and will be able to design, develop and evaluate such systems.

For prerequisite papers, restricted papers, and assessment, see page 80.

COMP325-14B (HAM) Human-Computer Interaction
20 points
This paper provides an introduction to the field of human-computer interaction (HCI), to enable students to gain a sound understanding of and appreciation for, the importance of the human-computer interface, to develop skills and techniques for the design and implementation of modern computer interfaces, to understand the role of interface design in the system life-cycle, and to gain experience in the study of software usability.

For prerequisite papers, restricted papers, and assessment, see page 80.

COMP336-14B (HAM) Graphics and Computer Games
20 points
This paper introduces interactive computer graphics, 3D modelling, real-time rendering, and animation; as applied to computer games.

Topics covered include: vector graphics, 3D modelling and animation, and real time rendering with an introduction to shaders. Practical work will involve programming computer game scene presentation and interaction, including camera movement, navigation, collision detection and character animation.

For prerequisite papers, restricted papers and assessment see page 81.
GRADUATE PAPERS

BCGD(Hons) PAPERS

Students enrol in 120 points at 500 level and choose from CGRDS81 and CGRD592 and a 30 point 500 level elective paper. Students work closely with a supervisor to select a research topic.

CGRDS24-14B Interaction Design

15 points
This paper offers advanced topics in Interaction Design. It takes a practical approach to interaction design for better user experience.

Prerequisite Paper(s) COMP324 or COMP325.
Restricted Paper(s) COMP424, COMP524, COMP438, COMP538.
Assessment: Internal assessment/Final examination ratio 1:0.

CGRDS32-14B (HAM) Information Visualisation

15 points
Information visualisation concerns the design and implementation of presentations of often complex information in such a way that users are able to efficiently and effectively extract the relevant features in and for their given context, and are able to gain insight about the information which might not otherwise have been possible. This paper aims to provide an awareness of the potential offered by visualisation techniques, a familiarity with the underlying concepts, and an understanding and ability to effectively design and apply information visualisations in a given context.

Prerequisite Paper(s) Three 300 level Computer Science or Computer Graphic Design papers.
Restricted Paper(s) COMP432/532.
Assessment: Internal assessment/Final examination ratio 1:0.

CGRDS51-14A (HAM) Studio Management

15 points
This paper seeks to fulfil a need for education suited to future senior designers, art directors and creative directors in the area of studio management. This paper is intended for people looking for a future senior position in a design studio, or those managing freelance teams. Students will apply the theory they earned in lectures to the management of a client-driven project by supervising a project team.

Prerequisite Paper(s) CGRD350 or equivalent.
Restricted Paper(s) None.
Assessment: Internal assessment/Final examination ratio 1:0.

CGRDS81-14A/B/S (HAM) Report of an Investigation

30 points

CGRDS91-14Y (HAM) Dissertation and Exhibition

30 points
Restricted Paper(s) CGRD592.

CGRDS92-14Y (HAM) Dissertation and Exhibition

60 points
Restricted Paper(s) CGRD591.

MCGD PAPERS

Students work closely with a supervisor to select a research topic and most students choose to enrol in CGRDS94 Computer Graphic Design Thesis and Realisation to complete a full research led MCGD.

CGRDS93-14C (HAM) Computer Graphic Design Thesis and Realisation

90 points

CGRDS94-14C (HAM) Computer Graphic Design Thesis and Realisation

120 points

Artwork: Honours students Haylie Gray and Saranna Drury showcased their fonts at the Best Awards 2013. Heartwood (above left) by Haylie Gray and Debussy Script (above right) by Saranna Drury.
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

COMPUTER GRAPHIC DESIGN RESEARCH
Tomás García Ferrari, Simon Laing, Keith Soo, Claire Timpany, Emmanuel Turner, Nicholas Vanderschantz

Research in computer graphic design is focused on visual communication and interactivity. The research encompasses historical studies in Aotearoa/New Zealand design, examining the meaning of form in character design, user interfaces for large information stores, typography for education and advanced media experimentation.

SAMPLE PUBLICATIONS

Further details can be obtained from the website at: www.cgd.waikato.ac.nz

RECENTLY COMPLETED THESES

MASTERS STUDENTS
Faber, Mary Modernity in the margins: a study of the introduction of typographic modernity in New Zealand, 1920–1940.
Mikaere, Emily How favourable attitudes are formed when the semantic associations of a logotype are congruent with brand personality.

Artwork: Olivia Paris, Second Year BCGD work. Spread from a fictitious magazine design project.

Artwork: Rose Rogers, Second Year BCGD work. Spread from a fictitious magazine design project.
COMPUTER SCIENCE – INTRODUCTION

The Computer Science Department is well recognised both nationally and internationally, especially for its various contributions to open source software development. The Department enjoys a high international academic profile for its work in such areas as broadband communication, data compression, digital libraries, formal methods, human-computer interaction, machine learning and software engineering.

The computing facilities in the Department are among the best in New Zealand, ranking from phones and tablets for mobile app development to cluster computers for massively parallel processing.

There are no specific subjects you need to study at secondary school to study Computer Science at Waikato. However, some first-year papers have specific prerequisites so check the paper list carefully.

There are no specific subjects you need to study at secondary school to study Computer Science at Waikato. However, some first-year papers have specific prerequisites so check the paper list carefully.

WHAT IS COMPUTER SCIENCE

Computer Science deals with the theory, design, analysis, implementation, efficiency and application of processes that transform information. The fundamental question underlying all of computer science is, “What can be automated?” Computer use in entertainment, industry, business, education and government is widespread, and the need for qualified professionals with a computing background continues to grow.

Computer Science majors learn about software systems and how people and computers interact. You’ll learn how to create new software, how to ensure that the software works well and does what it’s supposed to, and how to make that software easy for people to use.

EXAMPLE CAREERS

Web Architect: design and construct an organisation’s internet presence. A web architect will understand how to support a company’s brand and business strategy through its website, and will be able to implement that knowledge to create better software interfaces.

Software Developer: create new software and modify existing software systems. A software developer will write, test, and debug new computer programs.

Usability Engineer: work with software developers to ensure that software is easy to use, quick to learn, and useful. A usability designer ensures that technology fits human needs, by learning what users need and using that knowledge to create better software interfaces.

Network Architect: designs and manages computer networks for a Telco, ISP or large retail company. This includes technology selection and design, provisioning the network, security management and performance analysis.

COMPUTER SCIENCE STAFF

CHAIRPERSON
Associate Professor Bernhard Pfahringer

P.A. TO THE CHAIRPERSON
Marian McPherson
Email: elle@waikato.ac.nz

WEB ADMINISTRATOR
Bronwyn Webster
Email: bronwyn@waikato.ac.nz

PROFESSORS
Mark Apperley
BE PhD Auck FiITP
Email: mapperle@waikato.ac.nz
Human-computer interaction; interaction design; information visualisation; smart environments; energy informatics.

Geoff Holmes
BSc(Hons) PhD S’ton
Email: geoff@waikato.ac.nz
Machine learning; data mining.

Steve Reeves
BSc(Hons) PhD Birm FBCS ITCP FiITP
Email: stever@waikato.ac.nz
Formal methods; mathematical foundations of computer science; functional and logic programming.

Ian Witten
MSc Calg MA Camb PhD Essex CEng MIEEE FACM FRSNZ
Email: ihw@waikato.ac.nz
Programming by example; text compression; machine learning; digital libraries; interactive systems.

ASSOCIATE PROFESSORS
David Bainbridge
BEng(Hons) Edin PhD Cant
Email: davidb@waikato.ac.nz
Digital Libraries; multimedia information retrieval; document image analysis; mobile interfaces.

Sally Jo Cunningham
BA BS Tennessee PhD Louisiana FiITP
Email: sallyjo@waikato.ac.nz
Digital libraries; human-computer interaction.

Eibe Frank
Dipl-Inf Karlsruhe PhD Waik
Email: eibe@waikato.ac.nz
Machine learning; data mining; text mining.

Steve Jones
BSc(Hons) PhD Stirling
Email: stevej@waikato.ac.nz
Digital libraries; interactive information retrieval; small screen interaction.

Tony McGregor
BSc(Hons) MSc Massey PhD Waik
Email: tonym@waikato.ac.nz
Digital communications especially network measurement; operating systems.

Bernhard Pfahringer
MEng PhD Vienna Tech
Email: bernhard@waikato.ac.nz
Machine learning; data mining; AI; programming languages.

Mark Utting
MSc Waik PhD NSW
Email: marku@waikato.ac.nz
Model-based testing; formal methods; parallel programming languages.

SALLY JO CUNNINGHAM
BA BS Tennessee PhD Louisiana FiITP
Email: sallyjo@waikato.ac.nz
Digital libraries; human-computer interaction.

EIBE FRANK
Dipl-Inf Karlsruhe PhD Waik
Email: eibe@waikato.ac.nz
Machine learning; data mining; text mining.

STEVE JONES
BSc(Hons) PhD Stirling
Email: stevej@waikato.ac.nz
Digital libraries; interactive information retrieval; small screen interaction.

TONY Mcgregor
BSc(Hons) MSc Massey PhD Waik
Email: tonym@waikato.ac.nz
Digital communications especially network measurement; operating systems.

BERNHARD PFahringer
MEng PhD Vienna Tech
Email: bernhard@waikato.ac.nz
Machine learning; data mining; AI; programming languages.

MARK UTTING
MSc Waik PhD NSW
Email: marku@waikato.ac.nz
Model-based testing; formal methods; parallel programming languages.

ANNIKA HINZE
Dipl.Math.Techn. TU Berlin PhD FU Berlin
PGCertTT Waik
Email: hinze@waikato.ac.nz
Information systems; alerting systems; databases; women in computer science.

TE TAKA KEEGAN
Waikato-Maniapoto, Ngati Porou, MA PhD Waik
Email: tetaka@waikato.ac.nz
Maori language with computing/internet/digital libraries; traditional navigation.
COMPUTER SCIENCE STAFF

Ryan Ko
BEng(Hons) PhD Nanyang MIEEE MACM
Email: ryan@waikato.ac.nz
Cloud computing security; cloud data provenance; cyber security; linked data analysis; exploratory visualisation.

Robi Malik
MSc PhD Kaiserslautern
Email: robi@waikato.ac.nz
Model checking; finite-state machines; discrete-event systems.

Masood Masoodian
BSc(Hons) Massey PhD Waik
Email: masood@waikato.ac.nz
Formal methods, human-computer interaction.

Richard Nelson
BE(Hons) ME PhD Cant
Email: richardn@waikato.ac.nz
Computer networks; mobile networking; network applications.

David Nichols
BSc(Hons) PhD Lanc PGCertTT Waik
CEng MBCS CITP
Email: d.nichols@waikato.ac.nz
Human-computer interaction; digital libraries; information science.

Bill Rogers
MSc Waik
Email: coms0108@waikato.ac.nz
Programming languages; graphics; machine learning.

Tony Smith
MSc Calg PhD Waik
Email: tcs@waikato.ac.nz
Machine learning; natural language processing; computational biology.

Simon Spacey
BSc(Hons) York, MSc Lanc, MBA CASS, JLP Keio,
DEA Montp, DCSC Camb, DIU PhD Imperial
Email: sspacey@waikato.ac.nz
Computational Optimisation

LECTURER

Judy Bowen
MSc PhD Waik
Email: jbowen@waikato.ac.nz
Formal methods, human-computer interaction.

SENIOR TUTORS

Tim Elphick – BSc DipCompSci MCMS Waik
Nilesh Kanji – BSc DipCompSci Waik
Phillip Treweek – BSc BA DipRelSt MCMS Waik

RESEARCH FELLOWS

Raja Naeem Akram
BSc, MSc (C3) MSc (IS) PhD RHUL

Anthony Blake – PhD Waik

Doris Jung – Staatsexamen FU Berlin, PhD Waik

Sam Sarjant – BCMS(Hons) Waik

Craig Taube-Schock – BSc MSc Calgary PhD Waik

BACHELOR OF COMPUTING & MATHEMATICAL SCIENCES (BCMS/BCMS(Hons))

We list the requirements in the form of a “degree planner”. Where semesters are shown they refer to the 2014 schedule.

† BCMS regulation 8 requires 50 points from subjects in the field other than the major including at least 20 points above 100 level. STAT121 will help satisfy these requirements and is strongly recommended in its own right. It also helps students keep their options open for changing to another major with the Faculty if desired.

E elective papers may be replaced by papers at a higher level.

YEAR 1 – 120 POINTS

COMP103A/B
Introduction to Computer Science 1

COMP104B
Introduction to Computer Science 2

MATH102A/B
Introduction to Algebra

STAT121A†
Introduction to Statistical Methods

100 LEVEL
100 LEVEL
100 LEVEL
100 LEVEL

YEAR 2 – 120 POINTS

COMP200A
Computer Systems

COMP202B
Computer Communications

COMP235B
Logic and Computation

100 LEVEL
100 LEVEL
100 LEVEL

YEAR 3 – 120 POINTS

COMP3XX

COMP3YY

COMP3ZZ

200 LEVEL
200 LEVEL
200 LEVEL

YEAR 4 – 120 POINTS

COMP477B
Report of an Investigation

60 points of papers in Computer Science at 400 LEVEL

300 LEVEL
300 LEVEL

HONORARY PROFESSORS

John Cleary
BSc(Hons) MSc PhD Cant

Robert Spence
BSc PhD DIC DSc Lond Dr RCA FIEEE FREng
BACHELOR OF COMPUTING & MATHEMATICAL SCIENCES (BCMS/BCMS(Hons))

MAJOR – COMPUTER SCIENCE – BCMS(Hons)

We list the requirements in the form of a “degree planner”. Where semesters are shown they refer to the 2014 schedule.

<table>
<thead>
<tr>
<th>COMP103A/B</th>
<th>COMP104B</th>
<th>MATH102A/B</th>
<th>STAT121A†</th>
<th>100 LEVEL (must be outside FCMS)</th>
<th>100 LEVEL</th>
<th>100 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Computer Science 1</td>
<td>Introduction to Computer Science 2</td>
<td>Introduction to Algebra</td>
<td>Introduction to Statistical Methods</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEAR 1 – 120 POINTS

<table>
<thead>
<tr>
<th>COMP200A</th>
<th>COMP202B</th>
<th>COMP235B</th>
<th>200 LEVEL (must be outside FCMS)</th>
<th>200 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Systems</td>
<td>Computer Communications</td>
<td>Logic and Computation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMP203A</th>
<th>COMP204B</th>
<th>COMP205A</th>
<th>COMP206A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming with Data Structures</td>
<td>Object-Oriented Program Design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEAR 2 – 120 POINTS

<table>
<thead>
<tr>
<th>COMP3XX</th>
<th>COMP3YY</th>
<th>COMP3ZZ</th>
<th>300 LEVEL</th>
<th>300 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMP520</th>
<th>15 points of papers in Computer Science at 500 LEVEL</th>
<th>60 points at 500 LEVEL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Report of an Investigation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Permission may be given to include up to 30 points at 500 level from outside Computer Science.

† BCMS regulation 8 requires 50 points from subjects in the field other than the major including at least 20 points above 100 level. STAT121 will help satisfy these requirements and is strongly recommended in its own right. It also helps students keep their options open for changing to another major with the Faculty if desired.

ADMISSION TO HONOURS PROGRAMME

To be eligible for the honours programme candidates will require an average grade of B+ in at least 80 points at 300 level in Computer Science papers. This does not apply to double major students, who will be treated separately.

BUT WAIT, THERE’S MORE...

If you follow the above requirements, you will get a standard BCMS major in Computer Science. However, there are also several specialised forms of this degree that may interest you:

» Artificial Intelligence
» Computer Technology
» Data Mining
» Games and Multimedia
» Information Systems
» Interaction Design
» Internet Applications
» Networks
» Software Development

Each of these specialisations are carefully designed sets of papers that will ensure that you have a good mastery of that area of Computer Science. The requirements for each specialisation are described on pages 52-64. If you successfully complete one of these specialisations, it will be printed on your academic transcript.

DOUBLE MAJOR

For a double major, students must complete:

» 120 points at 100 level
» 120 points at 200 level – 60 points in each major
» 120 points at 300 level – 60 points in each major
» 120 points at 400/500 level – 60 points in each major
MAJOR – COMPUTER SCIENCE – BSc

We list the requirements in the form of a "degree planner". Where semesters are shown they refer to the 2014 schedule.

<table>
<thead>
<tr>
<th>YEAR 1 – 120 POINTS</th>
<th>100 LEVEL*</th>
<th>100 LEVEL*</th>
<th>100 LEVEL*</th>
<th>100 LEVEL*</th>
<th>100 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP103A/B</td>
<td>COMP104B††</td>
<td>MATH102A/B††</td>
<td>STAT121A†</td>
<td>STAT111B</td>
<td>Statistics for Science</td>
</tr>
<tr>
<td>Introduction to Computer Science 1</td>
<td>Introduction to Computer Science 2</td>
<td>Introduction to Algebra</td>
<td>Introduction to Statistical Methods</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2 – 120 POINTS</th>
<th>200 LEVEL</th>
<th>200 LEVEL</th>
<th>200 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP200A††</td>
<td>COMP202B††</td>
<td>COMP235B††</td>
<td></td>
</tr>
<tr>
<td>Computer Systems</td>
<td>Computer Communications</td>
<td>Logic and Computation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 3 – 120 POINTS</th>
<th>300 LEVEL</th>
<th>200 LEVEL</th>
<th>200 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP3XX</td>
<td>COMP3YY</td>
<td>COMP3ZZ</td>
<td></td>
</tr>
</tbody>
</table>

† BSc regulation 8 requires 105 points across at least four science subjects. STAT121 or STAT111 will help satisfy these requirements and is strongly recommended in its own right. It also helps students keep their options open for changing to another major with the Faculty if desired. Another useful option is ENEL111.

†† Students in the Applied Computing specialisation may replace these papers.

* These elective 100 level papers should be recognised Science papers, which are all papers offered by the Faculty of Science & Engineering, all COMP, STAT and MATH papers (except MATH168), and PHIL102, PSYC102 and PSYC103.

Elective papers may be replaced by papers at a higher level.

BACHELOR OF SCIENCE (BSc/BSc(Hons))

ADMISSION TO HONOURS PROGRAMME

Candidates will require an average grade of A- in at least 80 points at 300 level in Computer Science. The chosen programme of study for the honours degree must include 120 points at 500 level, with at least 60 points in Computer Science, including COMP591, the dissertation worth 30 points.

BUT WAIT, THERE’S MORE...

If you follow the requirements on page 50, you will get a standard BSc major in Computer Science. However, there are also several specialised forms of this degree that may interest you:

» Applied Computing
» Artificial Intelligence
» Computer Technology
» Data Mining
» Games and Multimedia
» Information Systems
» Interaction Design
» Internet Applications
» Networks
» Software Development

Each of these specialisations are carefully designed sets of papers that will ensure that you have a good mastery of that area of Computer Science. The requirements for each specialisation are described on pages 52-64. If you successfully complete one of these specialisations, it will be printed on your academic transcript.

DOUBLE MAJOR

For a double major, students must complete:

» 120 points at 100 level
» 120 points at 200 level – 60 points in each major
» 120 points at 300 level – 60 points in each major
SPECIALISATIONS IN COMPUTER SCIENCE

The following specialisations of the BCMS and BSc majors in computer science are available. They include various essential papers at 200 level, 300 level and (for BCMS only) 400 level. Some specialisations also suggest additional recommended papers – you should try to take as many of these as you can, since they will strengthen your degree and give you a better understanding of how your specialisation fits into the rest of the world. A few specialisations also contain highly recommended papers – although these are not compulsory, you should try especially hard to include them as they cover an important aspect of the specialisation.

APPLIED COMPUTING (BSc ONLY)

Computers are applied in a wide range of applications, from the database systems used to manage corporate data, the advanced graphics seen in modern games consoles, to the huge variety of internet applications now available. The Applied Computing specialisation concentrates on using existing tools and software libraries to build systems in the database, internet, game and multimedia areas.

APPLIED COMPUTING (BSc ONLY)

<table>
<thead>
<tr>
<th>YEAR 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP103A/B</td>
<td>Introduction to Computer Science 1</td>
</tr>
<tr>
<td>COMP126B</td>
<td>Computing Media</td>
</tr>
<tr>
<td>STAT121A</td>
<td>Introduction to Statistical Methods</td>
</tr>
<tr>
<td>100 LEVEL*</td>
<td>100 LEVEL*</td>
</tr>
<tr>
<td>COMP111B</td>
<td>Statistics for Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP258A</td>
<td>Programming Usable Systems</td>
</tr>
<tr>
<td>COMP219A</td>
<td>Database Practice and Experience</td>
</tr>
<tr>
<td>COMP233B</td>
<td>Internet Applications</td>
</tr>
<tr>
<td>100 LEVEL*</td>
<td>200 LEVEL</td>
</tr>
<tr>
<td>STAT111B</td>
<td>Statistics for Science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP329A</td>
<td>Database Systems</td>
</tr>
<tr>
<td>COMP315B</td>
<td>Information Systems Development</td>
</tr>
<tr>
<td>300 LEVEL**</td>
<td>300 LEVEL**</td>
</tr>
</tbody>
</table>

SPECIALISATIONS IN COMPUTER SCIENCE

- These elective 100 level papers should be recognised Science papers, which are all papers offered by the Faculty of Science & Engineering, all COMP, STAT and MATH papers (except MATH168), and PHIL102, PSYC102 and PSYC103.
- These two papers must be selected from COMP321B Practical Data Mining, COMP324A Interactive Multimedia Systems, COMP325B Human-Computer Interaction, COMP333A Web Applications Development and COMP336B Graphics and Computer Games, unless a double major is being completed or the Graphics & Games theme is being followed.
- Recommended papers for the two 200 Level papers from a single subject other than Computer Science, could be from: Management Communication, Management Systems, Screen and Media Studies, perhaps language papers, or even Philosophy or Psychology. If you are choosing one of these subjects it is important that you choose the 100 Level paper elective (any non-COMP paper) in the same subject if a prerequisite is required for the 200 Level papers. Suggested combinations are:
 - 100 Level PHIL102 and two 200 Level Philosophy papers, or
 - 100 Level MCOM102 and two 200 Level Management Communication papers, or
 - 100 Level MSYS121 and two 200 Level Management Systems papers, or
 - 100 Level SMST102 and two 200 Level Screen and Media papers.

Students who satisfy the requirements of the Applied Computing specialisation need not complete papers COMP200, COMP202, COMP203, COMP204, COMP235 which are normally compulsory for the Computer Science major.

THEMES

To help you choose your 300 level papers within the Applied Computing specialisation (in addition to COMP329A and COMP315B), here are several suggested themes:

- **Databases and Data Mining**: COMP321B Practical Data Mining and _one of_: COMP324A or COMP325B or COMP333A
- **Internet Applications**: COMP322A Web Applications Development and _one of_: COMP324A or COMP325B
- **HCI and Usability**: COMP224A Visual Design for Interactive Media and COMP324A Interactive Multimedia Systems and COMP325B Human-Computer Interaction
- **Graphics and Games**: COMP224A Visual Design for Interactive Media and COMP223A/BIS Information Discovery (Computer Games module) and COMP336B Graphics and Computer Games or SMST319A Games Studies and _one of_: COMP324A Interactive Multimedia Systems or COMP325B Human-Computer Interaction
SPECIALISATIONS IN COMPUTER SCIENCE

ARTIFICIAL INTELLIGENCE

Researchers in Artificial Intelligence are working to develop computer systems that match or exceed the capabilities of the human brain in, for example: learning, the representation of knowledge, reasoning, speech recognition and the use of language, and vision. This has led to many practical developments in the computer industry, including data mining and natural language interfaces to commercial software.

This specialisation will enable you to understand and use and even build your own Artificial Intelligence techniques.

The requirements for recognition of the Artificial Intelligence specialisation are as follows:

100 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Plus:
MATH101A/B/S Introduction to Calculus (15 points)

Recommended:
PSYC103A General and Experimental Psychology (15 points)

200 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Recommended:
PHIL210S Minds and Machines (20 points)

300 LEVEL
COMP313A Topics in Programming Languages (20 points)
COMP316A Artificial Intelligence Techniques and Applications (20 points)
COMP317A Design and Analysis of Algorithms (20 points)

Recommended additional paper:
COMP340A Reasoning about Programs (20 points)

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.

COMP421A Machine Learning Algorithms (15 points)

Recommended to take at least two of:
COMP423A Data Stream Mining (15 points)
COMP455B Bioinformatics (15 points)
COMP456B Computational Finance (15 points)

SPECIALISATIONS IN COMPUTER SCIENCE

COMPUTER TECHNOLOGY

WHAT IS COMPUTER TECHNOLOGY?

Computer Technology is the study of the hardware and software that are the foundations of modern computer systems. Computers are now a fundamental part of everyday lives, controlling everything from toasters to nuclear power stations. The need to build and deploy effective computing infrastructure is crucial to business and other organisations.

Operating systems are computer programs that control computers — allowing us to store information and run application software. They must support new hardware with multiple processors, ever faster and larger memories and a myriad of accessories and add-ons. You’ll go beyond Microsoft Windows to learn about alternative operating systems, how operating systems work, and how to set up secure systems.

Modern computer systems depend on the networks that interconnect them. Once built on phone lines, these networks now run on optical fibres and carry millions of computer, voice and video conversations. The demand for people who have the skills to build new and better networks is ever expanding; today’s applications require more speed, mobility, reliability and capacity than yesterday’s, and tomorrow’s networks will require even more. You’ll gain those skills — learning from networks lecturers who have significant industry experience themselves, and who can show you cutting-edge research and development in this field.

CAREER OPPORTUNITIES

There are three main areas that computer technology specialists work in:

Computer Hardware: Although most PCs are made in Asia with chips designed in the US, there are companies all over the world designing specialised hardware for particular situations. This includes a significant number of New Zealand companies. Products include embedded systems, industrial control systems, communications hardware, specialised peripherals and mobile devices such as GPS and digital radios. Careers include hardware design, firmware and software programming, test and measurement, requirements analysis and product support.

Systems Software: Most medium and all large organisations have specialised computer servers and other resources that require management. Careers include system design, capacity planning, system administration, systems programming, security, installation and support.

Computer Networks: These are now pervasive and require people to support and improve them. There are many public network operators in New Zealand, from international telecommunications carriers to local internet service providers. In addition many organisations run their own networks within their premises, between their sites and to their partners. Careers include network design, network installation and support, wireless system design and installation, network security, performance test and measurement and network application development.
SPECIALISATIONS IN COMPUTER SCIENCE

COMPUTER TECHNOLOGY

We list the Computer Technology requirements in the form of a “degree planner”. Where semesters are shown they refer to the 2014 schedule.

<table>
<thead>
<tr>
<th>100 LEVEL</th>
<th>100 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP103A/B Introduction to Computer Science 1</td>
<td>COMP104B Introduction to Computer Science 2</td>
</tr>
<tr>
<td>MATH102A/B Introduction to Algebra</td>
<td>STAT121A Introduction to Statistical Methods</td>
</tr>
<tr>
<td>STAT121A Introduction to Statistical Methods</td>
<td>MATH101A/B/S Introduction to Calculus</td>
</tr>
<tr>
<td>MATH101A/B/S Introduction to Calculus</td>
<td>ENEL111A Introduction to Electronics</td>
</tr>
<tr>
<td>ENEL120B Introduction to Electronics</td>
<td>200 LEVEL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP200A Computer Systems</td>
</tr>
<tr>
<td>COMP201B Operating Systems</td>
</tr>
<tr>
<td>COMP202B Computer Communications</td>
</tr>
<tr>
<td>COMP203B Logic and Computation</td>
</tr>
<tr>
<td>COMP203B Logic and Computation</td>
</tr>
<tr>
<td>ENEL212A Electronics for Digital Systems</td>
</tr>
<tr>
<td>ENEL205B Analog Electronics and Circuit Analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>200 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP204B Object-Oriented Program Design</td>
</tr>
<tr>
<td>COMP204B Object-Oriented Program Design</td>
</tr>
<tr>
<td>COMP312A Computer Networks</td>
</tr>
<tr>
<td>COMP312A Computer Networks</td>
</tr>
<tr>
<td>300 LEVEL **</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>300 LEVEL **</th>
<th>300 LEVEL **</th>
<th>200 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP310B Operating Systems</td>
<td>COMP311B Computer Systems Architecture (when available)</td>
<td>200 LEVEL</td>
</tr>
</tbody>
</table>

BCMS ONLY

<table>
<thead>
<tr>
<th>400 LEVEL ***</th>
<th>300 LEVEL</th>
<th>300 LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP477B Report of an Investigation</td>
<td>60 points</td>
<td>300 LEVEL</td>
</tr>
</tbody>
</table>

* This paper should be from outside FCMS.
** Chosen from COMP301B, COMP311B, COMP313A, COMP317A, ENEL317B, ENEL321B.
*** Must include at least three papers chosen from COMP401A, COMP413A, COMP414B, COMP418B.
† Chosen from MATH2**A/B, ENEL213A, COMP221A/B.

For the honours programme, the two 200 level papers in Year 3 must be replaced by an additional two 300 level papers, and Year 4 requirements are COMP520 Report of an Investigation (45 points) plus five COMP5XX papers (15 points each).

SPECIALISATIONS IN COMPUTER SCIENCE

DATA MINING

This specialisation will enable you to understand and use data mining techniques. The term data mining refers to the process of extracting potentially useful information from complex data using computational methods. Data mining has its roots in artificial intelligence, databases, and statistics. You will learn how to prepare the data for mining, get to know data mining algorithms, and learn to understand and evaluate the models that summarize the extracted information.

The requirements for recognition of the Data Mining specialisation are as follows.

100 LEVEL

Papers from degree planner on page 47 for BCMS and page 50 for BSc, plus MATH101A/B/S Introduction to Calculus (15 points)

200 LEVEL

Compulsory paper:

COMP219A Database Practice and Experience (20 points)

Plus:

Papers from degree planner on page 47 for BCMS and page 50 for BSc.

Highly recommended to take at least one of:

STAT221A Statistical Data Analysis (20 points)
STAT226B Bayesian Statistics (20 points)

300 LEVEL

Compulsory papers:

COMP321B Practical Data Mining (20 points)
COMP329A Database Systems (20 points)
COMP317A Design and Analysis of Algorithms (20 points)

Recommended additional paper:

COMP316A Artificial Intelligence Techniques and Applications (20 points)

400 LEVEL (BCMS ONLY)

Compulsory papers from degree planner on page 47 for BCMS.

Plus at least two of the following four papers:

COMP421A Machine Learning Algorithms (15 points)
COMP423A Data Stream Mining (15 points)
COMP455B Bioinformatics (15 points)
COMP456B Computational Finance (15 points)

Recommended additional papers:

COMP432B Information Visualisation (15 points)
COMP453A Extremely Parallel Programming (15 points)
SPECIALISATIONS IN COMPUTER SCIENCE

GAMES AND MULTIMEDIA

The use of computers in game design and multimedia applications is an area of high profile and rapid growth. This specialisation combines creative design with a computer science education. It contains a series of papers emphasising art, design, and creativity, and providing a background in related areas such as video, film and music. Students taking this specialisation will usually have taken art related papers at high school or shown interest in other creative and artistic fields.

The requirements for recognition of the Games and Multimedia specialisation are as follows.

100 LEVEL
Papers from degree planner on page 47 for BCMS and page 50 for BSc.

Highly recommended to also take at least two of:
COMP125A Visual Computing (15 points)
COMP126B Computing Media (15 points)
CGRD161B Effective Visual Communication (15 points)
MUSI140A Music and Computers (leads into MUSI240B) (15 points)
SMST101A Digital Screens (15 points)
SMST102B Media Cultures (15 points)
SMST112A/B Video Production 1 (leads into SMST212A/B) (15 points)

200 LEVEL

Compulsory papers plus:
COMP224A Visual Design for Interactive Media (20 points)

Highly recommended to also take at least one of:
COMP223A/B/S Information Discovery (20 points)
MUSI240B Screen Music Composition (20 points)
SMST216B Television: Medium, Narrative and Audience (20 points)
SMST210S Small Studio Production 1 (20 points)
SMST212A/B Video Production 2 (20 points)

Recommended to also take at least 20 points from:
MATH251A Multivariable Calculus (10 points)
MATH253A Linear Algebra (10 points)
MATH255B Differential Equations (10 points)
STAT221A Statistical Data Analysis (20 points)
STAT226B Bayesian Statistics (20 points)

300 LEVEL
COMP324A Interactive Multimedia Systems (20 points)
COMP325B Human-Computer Interaction (20 points)
COMP336B Graphics and Computer Games (20 points)

Plus at least one of:
COMP314B Software Engineering Project (20 points)
COMP317A Design and Analysis of Algorithms (20 points)

Recommended to also take some of:
SMST318A Animation Studies (20 points)
SMST319A Games Studies (20 points)
CGRD350A Intern Project (20 points)

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.

Plus:
COMP424B Interaction Design (15 points)
COMP436B Advanced Graphics and Computer Games (15 points)

Plus at least one of:
COMP448A Developing Mobile Applications (15 points)
COMP450A Location-Based Systems as Context-Aware Systems (15 points), or
COMP432B Information Visualisation (15 points)

INFORMATION SYSTEMS

The Information Systems specialisation prepares students for careers in the development of computerised business systems, the area of greatest opportunity in the New Zealand computer industry.

The specialisation concentrates on building appropriate information systems for many different kinds of situations. Information systems design, software development, information systems technologies, and practical work are strongly emphasised. It is also valuable to have a good understanding of the area for which you are building a system. The Information Systems specialisation therefore recommends optional papers to take in your choice of application area, including papers in management, accounting, finance, human resource management, operations management, or public administration, with other areas possible.

The requirements for recognition of the Information Systems specialisation are as follows.
SPECIALISATIONS IN COMPUTER SCIENCE

100 LEVEL
Papers from degree planner on page 47 for BCMS and page 50 for BSc.

Recommended to also take at least two of:
STMG191A/B Introduction to Management (15 points)
ACCT101A/B/T Accounting for Management (15 points)
PHIL103A/B Critical Reasoning (15 points)

200 LEVEL
Compulsory papers plus:
COMP219A Database Practice and Experience (20 points)

Recommended to also take at least one of:
HRMG241A/B Organisational Behaviour (20 points)
MCOM231A Interpersonal Communication (20 points)
MCOM292B Business Communication (20 points)
PHIL218S Ethics at Work (20 points)

300 LEVEL
COMP315B Information Systems Development (20 points)
COMP329A Database Systems (20 points)
COMP325B Human-Computer Interaction (20 points)

Recommended to also take some of:
COMP321B Practical Data Mining (20 points)
COMP333A Web Applications Development (20 points)
COMP313A Topics in Programming Languages (20 points)
COMP317A Design and Analysis of Algorithms (20 points)
MCOM313A Managing Conflict and Consensus (20 points)

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.

Plus:
COMP442A Web Search: Technical and Social Issues (15 points)
COMP443B Information Management (15 points)

Plus at least one of:
COMP432B Information Visualisation (15 points)
COMP450A Location-Based Systems as Context-Aware Systems (15 points)

SPECIALISATIONS IN COMPUTER SCIENCE

INTERACTION DESIGN
Interaction design is a rapidly growing field of study with a particular focus on complementary skills needed for the design, development, and evaluation of digital products and services that we use in our everyday lives. Interaction design is inherently inter-disciplinary in nature, and combines strong technical design skills with other forms of creative design skills. Interaction design practitioners therefore require a sound knowledge of computer science as well as having practical skills in applied areas such as interface design, psychology, etc.

100 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Highly recommended to also take at least two of:
COMP126B Computing Media (15 points)
COMP125A Visual Computing (15 points)
CGRD161B Effective Visual Communication (15 points)
PSYC103A General and Experimental Psychology (15 points)
SMST112A/B Video Production 1 (15 points)

200 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Plus:
COMP224A Visual Design for Interactive Media (20 points)

Highly recommended to also take at least one of:
COMP233B Internet Applications (20 points)
PSYC226A The Psychology of Perception (10 points) and PSYC230B Cognitive Psychology (10 points)
SSRP202A/B The Practice of Social Science Research (20 points)
STAT221A Statistical Data Analysis (20 points)

300 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Plus:
COMP324A Interactive Multimedia Systems (20 points)
COMP325B Human-Computer Interaction (20 points)

Plus at least one of:
COMP314B Software Engineering Project (20 points)
COMP317A Design and Analysis of Algorithms (20 points)
CGRD350A Intern Project (20 points)
SPECIALISATIONS IN COMPUTER SCIENCE

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.

Plus:
COMP424B Interaction Design (15 points)

Plus at least one of:
COMP432B Information Visualisation (15 points)
COMP448A Developing Mobile Applications (15 points)
COMP450A Location-Based Systems as Context-Aware Systems (15 points)

INTERNET APPLICATIONS

The internet is now an accepted part of people’s lives. We expect to be able to communicate, shop and access information from the convenience of our homes, or via smartphones or tablets when we are travelling. This area of specialisation will enable you to understand and use the software that makes it all possible; from building individual web pages, through client and server scripting to provide interactivity, to the methods of identifying people visiting a website and storing information that will enable you to construct web based information systems.

The requirements for recognition of the Internet Applications specialisation are as follows.

100 LEVEL
Papers from degree planner on page 47 for BCMS and page 50 for BSc.

200 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Plus:
COMP233B Internet Applications (20 points)
COMP219A Database Practice and Experience (20 points)

300 LEVEL
COMP333A Web Applications Development (20 points)
COMP325B Human-Computer Interaction (20 points)

Recommended to also take:
COMP312A Computer Networks (20 points)

SPECIALISATIONS IN COMPUTER SCIENCE

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.

Plus:
COMP413A Computer Networks (15 points)
COMP442A Web Search: Technical and Social Issues (15 points)

Recommended:
COMP418B Cyber Security (15 points)
COMP448A Developing Mobile Applications (15 points)
COMP450A Location-Based Systems as Context-Aware Systems (15 points)

NETWORKS

Computer networks are a fundamental infrastructure in a modern society. The uses and importance of computer networks continues to increase. These networks include the internet and the many private networks, such as those operated by banks, government agencies and large retail organisations. While all computing graduates need a basic understanding of computer networks, the networks specialisation prepares students to take a major role in this dynamic and growing area. Students will gain an understanding of how computers communicate at a physical and logical level, the strengths and weaknesses of different communications protocols, the technologies underlying the internet and the trends and future of computer networks. The specialisation includes both practical and theoretical aspects of computer networks.

200 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.

Recommended:
ENEL212A Electronics for Digital Systems (10 points)

300 LEVEL
COMP301B Operating Systems (20 points)
COMP312A Computer Networks (20 points)

Recommended:
COMP311B Computer Systems Architecture

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.

COMP413A Computer Networks (15 points)
COMP414B Carrier and ISP Networks (15 points)
COMP418B Cyber Security
SOFTWARE DEVELOPMENT

Software development is the specification, design, implementation, documentation and maintenance of computer programs. The Software Development specialisation will help you to take a systematic approach to the development of quality software, have an understanding of the software life cycle, gain an appreciation of the role of formal methods in software development, be familiar with a variety of programming languages and tools, and be able to use a wide selection of algorithms and data structures in your programming.

The requirements for recognition of the Software Development specialisation are as follows.

100 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.
Recommended to also take one of:
PHIL102B Introduction to Logic (15 points)
PHIL103A/B Critical Reasoning (15 points)

200 LEVEL
Compulsory papers from degree planner on page 47 for BCMS and page 50 for BSc.
Recommended to also take:
PHIL218S Ethics at Work (20 points)

300 LEVEL
COMP314B Software Engineering Project (20 points)
Plus at least two of:
COMP301B Operating Systems (20 points)
COMP313A Topics in Programming Languages (20 points)
COMP317A Design and Analysis of Algorithms (20 points)
COMP340A Reasoning about Programs (20 points)

400 LEVEL (BCMS ONLY)
Compulsory papers from degree planner on page 47 for BCMS.
Plus at least three of:
COMP413A Computer Networks (15 points)
COMP440 Software Engineering Methodologies (when available)
COMP448A Developing Mobile Applications (15 points)
COMP452A Model Checking (15 points)
COMP453A Extremely Parallel Programming (15 points)
COMP454 Specification Languages and Models (15 points) (when available)

BACHELOR OF ENGINEERING (HONOURS) (BE(Hons))

The Waikato BE(Hons) is the nation’s newest engineering degree. Our desire for you to be at the cutting edge of engineering is reflected in the five programmes offered through the Faculty of Computing & Mathematical Sciences and the Faculty of Science & Engineering:

COMPUTING & MATHEMATICAL SCIENCES
» Software Engineering

SCIENCE & ENGINEERING
» Chemical and Biological Engineering
» Electronic Engineering (including an optoelectronics/photonics stream)
» Materials and Process Engineering
» Mechanical Engineering

Students intending to enrol in the Software Engineering programme must enrol in the Faculty of Computing & Mathematical Sciences.

All programmes are designed to prepare students for careers in the new economy and build on the expertise found in the major teaching departments involved with Computing & Mathematical Sciences and Science & Engineering at the University.

The professional application of engineering and design skills, including the requirements of professional practice, means you will be prepared for roles as engineers in industry and able to create, design and realise sophisticated engineering technologies. Our papers combine high-quality design skills with the ability to develop, run and manage companies whatever their size. The Waikato programmes are designed to allow you to develop your own potential and build on the expertise of our Co-operative Education Unit, which arranges and oversees the industrial work placement component of your degree. This ensures the quality of your work placement.

Graduates in the BE(Hons) are in high demand as professional engineers, managers, designers and policy makers in industries such as aerospace, pulp and paper, food and dairy, product and industrial plant design, biomedical engineering, environmental engineering, IT and energy.

For further information on Engineering at Waikato see the website: www.eng.waikato.ac.nz
ENTRY REQUIREMENTS FOR THE BE(Hons) (COMPUTING & MATHEMATICAL SCIENCES PROGRAMMES ONLY)

SOFTWARE ENGINEERING
To be guaranteed a place in the Bachelor of Engineering (Honours) in Software Engineering you must achieve University Entrance including a minimum of 16 credits at NCEA Level 3 Mathematics with Calculus plus at least 14 credits in each of two other approved subjects for University Entrance. The Software Engineering programme does not require Physics.

GENERAL
Each application will be considered on a case-by-case basis.

If you do not meet these requirements but are eligible to be admitted into a BSc or BSc(Tech) degree you may take relevant papers to build up your skills. You can then apply for entry to the BE(Hons) degree. To discuss how this works, please contact the Faculty of Computing & Mathematical Sciences.

SOFTWARE ENGINEERING PROGRAMME
WHAT IS SOFTWARE ENGINEERING?
Software Engineers design the software that we increasingly rely on. Industrial robots, mobile phones, cars, trains, planes, DVD players, washing machines, computer games, energy networks, security systems – all these are driven by software. And that software must be reliable and flexible, usable and cost-effective – after all, we now depend absolutely on these devices. Building that kind of software requires a software engineer!

Even now, the average household contains many computers, embedded in different appliances, toys and vehicles. In ten years time it is estimated that a home will contains hundreds of computers. The world is changing rapidly, and software engineers are at the forefront of many of those changes.

Companies in New Zealand and overseas are looking for software engineering graduates. Forget the dotcom bust in 2001-2, the number of available software jobs in the USA, Australia and New Zealand is now higher than it was in 2000. “Employment of Computer Software engineers is projected to increase by 38 percent over the 2006 to 2016 period, which is much faster than the average for all occupations”, according to the 2008-09 Edition of the Occupations Outlook Handbook, Bureau of Labor Statistics.

Our BE(Hons) in Software Engineering, which is accredited by the professional body IPENZ, is a four-year degree that starts with programming and basic engineering ideas in the first year, progresses through more advanced design and programming techniques in the second year, then branches out into a wide variety of design and implementation challenges in the third and fourth years. You’ll also study professional ethics, marketing and engineering management.

After your second and third years of study you will spend each summer in paid employment – working in an industry setting, perhaps developing new software.

In your fourth year, half your time will be spent on a major project which will exercise the knowledge and skills you will have built up in the previous years.

SOME REASONS FOR STUDYING SOFTWARE ENGINEERING
» Our work placement scheme means that you’ll leave university with 800 hours of paid work experience, in software engineering.
» The BE(Hons) papers emphasise innovation and practical business skills, so you’ll have the background to be an entrepreneur as well as an inventor.
» You will gain a qualification in what is projected to be one of the fastest growing occupations over the next five years.
BACHELOR OF ENGINEERING (HONOURS) (BE(Hons))

SOFTWARE ENGINEERING

We list the BE (Hons) Software Engineering requirements in the form of a “degree planner”. Where semesters are shown they refer to the 2014 schedule.

<table>
<thead>
<tr>
<th>YEAR 1 – 120 POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP103A/B</td>
</tr>
<tr>
<td>COMP104B/S</td>
</tr>
<tr>
<td>MATH101A/B/S</td>
</tr>
<tr>
<td>MATH102A/B</td>
</tr>
<tr>
<td>ENGC180A</td>
</tr>
<tr>
<td>Any 2 of: COMP123A/B/S, ENEL111A, STAT121A/S, CHEM101A, STAT111B</td>
</tr>
</tbody>
</table>

| COMP123A |
| COMP129A |
| ENMG282A |
| COMP224B |
| ENMG282B |
| ENMG279B |

| COMP200A |
| ENMG283A |
| COMP202B |
| ENMG284B |

<table>
<thead>
<tr>
<th>ENGC371 Engineering Placement 1 (SUMMER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENMG311A Engineering Statistics</td>
</tr>
<tr>
<td>COMP317A Design and Analysis of Algorithms</td>
</tr>
<tr>
<td>COMP340A Reasoning about Programs</td>
</tr>
<tr>
<td>COMP344A Software Engineering Project</td>
</tr>
<tr>
<td>COMP325B Human–Computer Interaction</td>
</tr>
<tr>
<td>Plus 1 of: COMP312A, COMP313A, COMP301B</td>
</tr>
<tr>
<td>ENMG379A Reflection on Professional Workplace Experience</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP321B Practical Data Mining</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENGC372 Engineering Placement 2 (SUMMER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one of COMP424B Interaction Design</td>
</tr>
<tr>
<td>At least one of COMP452A Model Checking</td>
</tr>
<tr>
<td>COMP4XX*</td>
</tr>
<tr>
<td>COMP4XX*</td>
</tr>
</tbody>
</table>

| COMP446A Developing Mobile Applications |
| COMP448A Developing Interactive Systems |
| COMP439A Usability Engineering |

**At least 120 points at Level 400.

** Recommended papers: COMP401, COMP413, COMP414, COMP424, COMP426, COMP439, COMP440, COMP448, COMP452 and COMP453. Having made your choices in the first two columns, fill these slots if necessary, to make 120 points at Level 400.

COMPUTER SCIENCE PAPERS

This section contains short descriptions of papers offered in the subject Computer Science.

For more information, including paper outlines, refer to the department website: www.cs.waikato.ac.nz

Note on Assessment

The requirements for an unrestricted pass in Computer Science papers are normally a minimum grade of C for the paper as a whole, plus a minimum grade of D in the final examination (if any).

100 LEVEL PAPERS

It is not necessary to have any background knowledge of computers to begin studying computing at University level, but this may influence your initial choice of papers. Whether you intend to major in Computer Science, or intend to take only a few basic papers, you will find sufficient choice at 100 level for a good foundation on which to build further studies.

Your selection of papers should be based on your own needs and interests, but you should also check the prerequisites for papers you may want to take in future years, and make sure you enrol in any you will need.

SUPPORTING PROGRAMMES

If you intend to take only two or three Computer Science papers as support for another major subject, you should enrol initially in COMP123A/B/S *The Computing Experience*. The Computing Experience provides an introduction to computers and their use and can lead to further general Computer Science study at 200 level. This should also be your choice if you wish to take only one paper in Computer Science and have no previous experience.

COMPUTING SCIENCE PAPERS – 100 LEVEL

COMP103-14A (HAM) & 14B (HAM) Introduction to Computer Science 1
15 points
This paper introduces computer programming in C# – the exciting challenge of creating software and designing artificial worlds within the computer. It also covers concepts such as the internals of the home computer, the history and future of computers, how computers are changing society, and current research and challenges in computing.

Assessment
Internal assessment/Final examination ratio 2:1 or 1:2, whichever works in your favour.
The practical programme must be completed to the satisfaction of the co-ordinator for the paper.

Note(s):
This paper is compulsory for a major in Computer Science.

COMP104-14B (HAM) & 14S (HAM) Introduction to Computer Science 2
15 points
This paper continues from COMP103, assuming a knowledge of basic programming techniques, which it expands on particularly in the areas of data organisation and algorithms. It also provides an introduction to: code contracts, computer architecture, Boolean algebra, assembly language, program analysis, and object-oriented programming.

Prerequisite Paper(s)
COMP103 or relevant computing experience subject to Chairperson’s approval.

Restricted Paper(s)
COMP134.

Assessment
Internal assessment/Final examination ratio 2:1 or 1:2, whichever works in your favour.
The practical programme must be completed to the satisfaction of the co-ordinator for the paper.

Note(s):
This paper is compulsory for a major in Computer Science, except for the Applied Computing specialisation.

COMP123-14A (HAM) & 14B (HAM) & 14S (HAM) The Computing Experience
15 points
This paper provides an introduction to the wealth of computer tools available for application in the sciences, the arts, and other disciplines. It is based on an intensive laboratory programme to give an overview of the nature and use of computers. A wide range of practical exercises is provided. You tailor the paper to your own needs and interests by selecting an appropriate set of these exercises. There are introductory practical sessions catering to the needs of those who have not used a computer before. More advanced exercises extend and challenge those with previous computing experience. The paper is recommended to students from all disciplines as an important contribution to a modern education.

Assessment
Internal assessment/Final examination ratio 1:0.
The practical programme must be completed to the satisfaction of the co-ordinator for the paper.

Note(s):
This paper is not normally available to students majoring in Computer Science.

COMP125-14A (HAM) Visual Computing
15 points
This paper enables students to perform basic computing operations and to operate software packages for the manipulation of visual images and text for use in print and screen-based applications. Students will be introduced to basic computing concepts and provided with software tutorials and related exercises.

Assessment
Internal assessment/Final examination ratio 1:0.

COMP126-14B (HAM) Computing Media
15 points
In this paper students will create multimedia web content using appropriate software packages. Web design concepts will be introduced for the effective use of text, images and sounds. Students will be introduced to relevant computing concepts and provided with software tutorials and related exercises.

Assessment
Internal assessment/Final examination ratio 1:0.

CGRD161-14B (HAM) Effective Visual Communication
15 points
Students develop practical knowledge and awareness of style and aesthetics in visual communication design. Skills are taught in industry standard software to produce effective personal, printed outcomes using typography and image.

Restricted Paper(s)
CGRD141 and CGRD142.

Assessment
Internal assessment/Final examination ratio 1:0.

ENEL111-14A (HAM) Introduction to Electronics
15 points
This paper covers basic electronic concepts. Topics include circuit theory, Thevenin’s theorem, resistors, capacitors, inductors and power sources, diodes, amplifiers, feedback, logic circuits, analog-to-digital and digital-to-analog converters.

Assessment
Internal assessment/Final examination ratio 1:1.
200 LEVEL PAPERS

COMP200-14A (HAM) Computer Systems
10 points
This paper provides an overview of the operation of computer systems, including their hardware and software. The central theme of the paper is the way in which the hardware and software of a computer system co-operate to allow the execution of programs written in a high-level language.

Topics covered include:
» Data Representation
» Assembly Language Programming
» Operating Systems

Prerequisite Paper(s) COMP104 or COMP134 or (COMP103 and ENEL111).
Assessment Internal assessment/Final examination ratio 1:1.

COMP202-14B (HAM) Computer Communications
10 points
This paper provides an overview of the technologies and protocols and security issues involved in computer communications. It will introduce programming issues in communications, including error handling and concurrency. Practical work will look at the Internet Protocols TCP, and IP, and include programming exercises using socket interfaces.

Prerequisite Paper(s) COMP104 or COMP134.
Assessment Internal assessment/Final examination ratio 1:1.

COMP203-14A (HAM) Programming with Data Structures
10 points
This paper introduces programming with data structures using Java. It assumes a familiarity with basic object-oriented programming concepts and techniques, as introduced in COMP103 and COMP104 using the C# programming language. Students will learn how to program in Java and become familiar with the design, analysis, and application of commonly-used data structures, including stacks, queues, lists, trees, and sets.

Prerequisite Paper(s) COMP104 or COMP134.
Restricted Paper(s) COMP241.
Assessment Internal assessment/Final examination ratio 1:0.

COMP204-14B (HAM) Object-Oriented Program Design
10 points
This paper introduces Project Management, UML, Design Patterns, TDD, OOD and Android. The primary language is Java with others used where appropriate.

Prerequisite Paper(s) COMP203.
Restricted Paper(s) COMP242.
Assessment Internal assessment/Final examination ratio 1:0.

COMP219-14A (HAM), 14A (TGA) & 14B (TGA) Database Practice and Experience
20 points
Databases are increasingly being used in both small and large businesses as the cornerstone of modern information management systems. Through advances in client/server computing it is now possible to support corporate database activity on a variety of personal computer platforms. It is becoming increasingly important in the areas of Information Systems and Management Information Systems for database users to acquaint themselves with this type of software so that they can gain access to information directly rather than through a systems analyst.

The objective of this paper is to provide students with the knowledge and experience of a modern corporate relational database system. The paper will emphasise practical skills learned from a series of laboratory exercises.

Topics covered in both the laboratory and lecture programme will include:
» Data, Databases and DBMS
» Database Design
» Data Definition (SQL)
» Data Retrieval (SQL) Data Modification (SQL)
» Views
» Triggers and Integrity Constraints
» Security

Prerequisite Paper(s) COMP103.
Assessment Internal assessment/Final examination ratio 1:0.

COMP221-14A (HAM) & 14B (HAM) & 14S (HAM) Introduction to 3D Modelling and Animation
10 points
Introduces 3D modelling concepts through self-paced laboratory exercises. Students will use polygons, nurbs, and texturing to develop simple scenes. Basic key framing, path animation, and the use of dynamics are explored, along with the effects of lighting and cameras for rendering.

Prerequisite Paper(s) COMP103 or COMP123.
Assessment Internal assessment/Final examination ratio 1:0.

Restrictions Students enrolling in this paper and one of COMP223/COMP278 cannot include the 3D Modelling and Animation practicals in their COMP223/COMP278 module selections.
COMPUTER SCIENCE PAPERS – 200 LEVEL

COMP223-14A (HAM) & 14B (HAM) & 14S (HAM) & 14A (TGA) Information Discovery
20 points
This paper can be taken as a follow on to COMP123 The Computing Experience or directly by students with prior experience at using computers. The paper provides an opportunity to widen your experience of computer software. It is based on an intensive laboratory programme, where you are able to tailor the paper to your own needs and interests by selecting an appropriate set of modules.

Modules include: video editing, information presentation, exploitation of information sources, computer game construction, animation and 3D modelling. Please note that module availability may vary depending on resources.

Prerequisite Paper(s) No prerequisite papers but assumes prior experience at using computers.
Assessment Internal assessment/Final examination ratio 1:0.

COMP224-14A (HAM) Visual Design for Interactive Media
20 points
This paper is a practical study of computer graphic design principles; covering topics such as graphic design techniques, typography, colour, digital images, designing for computer displays and the web.

Prerequisite Paper(s) One of CGRD161 or COMP104 or COMP126.
Restricted Paper(s) CGRD241, CGRD224.
Assessment Internal assessment/Final examination ratio 1:0.

COMP233-14B (HAM) Internet Applications
20 points
This paper provides a broad overview of the principles and technologies used in Internet Applications, with practical experience of client-side and server-side programming. Client-side topics include HTML, CSS and Javascript to support the development of interactive web pages containing a variety of media. Server-side topics focus on the development of database-driven websites using PHP and MySQL to dynamically generate web page content.

Topics covered include:
» Web page creation and styling using HTML and CSS.
» Protocols and standards supporting Internet Applications design and security issues.
» Client-side and server-side programming, with practical work in JavaScript and PHP.
» Database-driven web applications.

Prerequisite Paper(s) COMP103.
Assessment Internal assessment/Final examination ratio 2:1.

COMP235-14B (HAM) Logic and Computation
20 points
This paper introduces computer science and mathematics students to the formal theory of computation, as well as some important ideas in discrete mathematics of relevance to computer science and IT.

In the discrete mathematics half of the paper, a formal approach to logic is introduced: the basic connectives, well-formed formulas, truth tables, laws of equivalence, testing validity of logical arguments, plus an introduction to predicates and quantifiers. Also covered are modular arithmetic and its applications (to coding and cryptography for example) as well as an introduction to binary relations and directed graphs (connectivity and Warshall’s algorithm).

The other half of the paper deals with the theory of computation. Topics include: finite state automata and regular languages, Kleene’s theorem, Turing machines and the Halting problem, formal grammars and the Chomsky hierarchy. There is laboratory work in which students design Turing Machines.

Prerequisite Paper(s) MATH102.
Restricted Paper(s) MATH258.
Assessment Internal assessment/Final examination ratio 1:1.

Note(s): This paper is compulsory for a major in Computer Science, except for the Applied Computing specialisation.

COMP241-14A (HAM) Software Engineering Development
10 points
This paper introduces programming with data structures using Java, and software engineering practices such as unit testing and pre/post specification. Students will learn how to program in Java and become familiar with the design, analysis, and application of commonly-used data structures, including stacks, queues, lists, trees, and sets.

Prerequisite Paper(s) COMP104 or COMP134.
Restricted Paper(s) COMP203.
Assessment Internal assessment/Final examination ratio 1:0.

COMP242-14B (HAM) Software Engineering Process
10 points
This paper introduces Project Management, UML, Design Patterns, TDD, OOD and Android. The primary language is Java with others used where appropriate.

Prerequisite Paper(s) COMP241.
Restricted Paper(s) COMP204.
Assessment Internal assessment/Final examination ratio 1:0.
COMP258-14A (HAM) Programming Usable Systems
20 points
The objectives of this paper are:
» To enhance students' software development skills, particularly with respect to object-oriented software design and implementation.
» To develop students' skills in designing interactive software for users, with a focus on graphical user interface design.

The paper develops the basic programming expertise gained in COMP103, and introduces issues of software usability. The paper is practically oriented, with laboratory sessions, problem-solving tutorials and small to medium-sized project work providing opportunity for application of newly-learned skills and techniques. Object-oriented software development techniques (including use-case analysis, object modelling and implementation) will be addressed, and aspects of designing usable software (including prototyping, design principles, component use, layout and feedback) will be introduced.

Prerequisite Paper(s) COMP103.
Restricted Paper(s) COMP203, COMP241.
Assessment Internal assessment/Final examination ratio 1:1.

COMP278-14A (HAM) & 14B (HAM) & 14S (HAM) Interactive Computing
20 points
Students can select from a variety of themes, including 3D modelling and animation; video editing; information presentation; computer game construction; and human-computer interaction.

Prerequisite Paper(s) COMP103 or COMP123.
Assessment Internal assessment/Final examination ratio 1:0.

ENEL212-14A (HAM) Electronics for Digital Systems
10 points
This paper covers the theory, design and applications of logic circuits and technology related to digital systems.

Prerequisite Paper(s) ENEL111 or COMP104.
Restricted Paper(s) ENEL211.

ENEL213-14A (HAM) Instrumentation
10 points
This paper covers essentials of instrumentation as applied to analogue and digital systems.

Prerequisite Paper(s) ENEL111.
Restricted Papers(s) ENEL211.
Assessment Internal assessment / examination ratio: 1:0.
COMP312-14A (HAM) Computer Networks
20 points
A study of computer networks with a focus on internet protocols. The aim of this paper is to develop a practical understanding of the operation and programming of core internet protocols, application protocols and transmission technologies.

Topics covered include:
» Review of basic communications concepts
» IPv4 and IPv6 TCP
» Routing principles
» Interior routing protocols including OSPF
» External routing protocols (BGP)
» DNS
» Network applications and application protocols
» Ethernet
» Other transmission technologies.

Prerequisite Paper(s) COMP202, and one of COMP203 or COMP241.
Assessment Internal assessment/Final examination ratio 1:1.

COMP313-14A (HAM) Topics in Programming Languages
20 points
This paper deals with the design, implementation and use of a selection of programming languages. Topics will be selected from the following:
» The history and future of programming languages.
» Grammars and parsing techniques.
» Language implementation issues (interpreters, compilers, garbage collection).
» Practical language semantics.
» Language support for object-orientation.
» Declarative programming languages.

Prerequisite Paper(s) COMP200, and one of COMP203 or COMP241.
Assessment Internal assessment/Final examination ratio 1:0.

COMP314-14B (HAM) Software Engineering Project
20 points
Students organise themselves into and work in small groups throughout the paper. They will contribute to all aspects of building a medium-sized piece of software: developing requirements and specification; designing the system structure and user-interface; carrying out documentation, implementation and maintenance. This work is complemented by lectures which cover these items and also introduce other important software engineering ideas.

Prerequisite Paper(s) COMP204 or COMP242.
Assessment Internal assessment/Final examination ratio 1:0.

COMP315-14B (HAM) & 14B (TGA) Information Systems Development
20 points
This project-based paper covers advanced topics in information systems development, while emphasising their application during an actual information systems development project. Students organise themselves into small working groups, then locate an organisation and problem appropriate to address through the development of an information system. During the paper, students will follow the phases and perform the tasks of systems planning, analysis, design and implementation. In doing so, they must submit reports, conduct reviews, demonstrate prototypes developed, and make formal presentations at the appropriate milestones during the semester.

The paper will be of interest to those majoring in computer science and information systems and also to students in other Faculties who wish to deepen their understanding of information systems design beyond that covered in COMP219 Database Practice and Experience, and to obtain hands-on experience with these systems in a real business environment.

Prerequisite Paper(s) COMP219.
Restricted Paper(s) COMP314.
Assessment Internal assessment/Final examination ratio 1:0.

COMP316-14A (HAM) Artificial Intelligence Techniques and Applications
20 points
This paper gives an overview of artificial intelligence, including intelligent search, logic-based and probabilistic knowledge representation and reasoning, and machine learning.

Prerequisite Paper(s) COMP203 or COMP241.
Assessment Internal assessment/Final examination ratio 2:1 or 1:2, whichever works in your favour.
COMP317-14A (HAM) Design and Analysis of Algorithms
20 points
This paper is concerned with fundamental data structures and their algorithms. It involves a study of classical and recently discovered methods, aimed at giving students an awareness of techniques for solving a diverse range of problems using a computer. Analysis of important performance characteristics, efficiency and scalability and discussion of issues pertaining to applicability, adaptation and design will also be addressed. This is an essential paper for students interested in the art and science of computer programming.

Prerequisite Paper(s) COMP203 or COMP241.
Assessment Internal assessment/Final examination ratio 2:1.

COMP321-14B (HAM) Practical Data Mining
20 points
This paper is a practical introduction to data mining. Students will gain hands-on experience using the WEKA open-source data mining software developed by the Computer Science Department and used by companies and universities both in New Zealand and overseas.

Prerequisite Paper(s) COMP103 and 20 points at 200 level in Computer Science.
Assessment Internal assessment/Final examination ratio 2:1.

COMP324-14A (HAM) Interactive Multimedia Systems
20 points
This paper introduces interactive multimedia systems, covering topics such as design, development and evaluation of multimedia applications. Students will acquire a theoretical and practical understanding of interactive multimedia systems and will be able to design, develop and evaluate such systems.

Prerequisite Paper(s) COMP224, CGRD224 or CGRD242.
Assessment Internal assessment/Final examination ratio 2:1.

COMP325-14B (HAM) & 14B (TGA) Human-Computer Interaction
20 points
This paper provides an introduction to the field of human-computer interaction (HCI), to enable students to gain a sound understanding of, and appreciation for, the importance of the human-computer interface, to develop skills and techniques for the design and implementation of modern computer interfaces, to understand the role of interface design in the system life-cycle, and to gain experience in the study of software usability.

Prerequisite Paper(s) One of COMP203, COMP241, COMP233, COMP258, CGRD224, CGRD242, or COMP224
Assessment Internal assessment/Final examination ratio 2:1.

COMP329-14A (HAM) Database Systems
20 points
This paper provides an introduction to the advanced features of database management systems. Students will have hands-on practice in using these features to administer a large database. The specific attributes that successful students will acquire are:
- An understanding of the role of the database administrator in managing large complex databases.
- Skill at database design for large, complex data sets.
- The ability to effectively use advanced database administrator functions of a database management system.

Prerequisite Paper(s) COMP219 and one of COMP203, COMP204, COMP205, COMP241, COMP242, COMP258.
Assessment Internal assessment/Final examination ratio 2:1 or 1:2, whichever works in your favour.

COMP333-14A (HAM) & 14A (TGA) Web Applications Development
20 points
This paper covers a range of topics relating to the development of software applications delivered via the web. These include: the latest developments in HTML, CSS and JavaScript; asynchronous client-server communication using AJAX; security issues; Object Oriented Javascript; JSON; Javascript libraries; consuming and creating RESTful web services; XML.

Prerequisite Paper(s) COMP233.
Assessment Internal assessment/Final examination ratio 1:0.

COMP336-14B (HAM) Graphics and Computer Games
20 points
This paper introduces interactive computer graphics, 3D modelling, real-time rendering, and animation; as applied to computer games.

Topics covered include: vector graphics, 3D modelling and animation, and real time rendering with an introduction to shaders. Practical work will involve programming computer game scene presentation and interaction, including camera motion, navigation, collision detection and character animation.

Prerequisite Paper(s) COMP258 or COMP204.
Assessment Internal assessment/Final examination ratio 2:1.
COMPUTER SCIENCE PAPERS – 300 LEVEL

COMP340-14A (HAM) Reasoning about Programs
20 points
This paper introduces predicate logic as it is used in various areas of software development and artificial intelligence, as well as Hoare logic and its use for program verification. Methods of reasoning in logic and automated theorem proving are discussed. In the laboratories, students learn to practice software verification using modern proof tools.
Prerequisite Paper(s) COMP103 and (COMP235 or MATH258).
Assessment Internal assessment/Final examination ratio 1:1.

COMP371-14C (HAM) Computer Science Placement 1
20 points
This paper is only available to BSc(Tech) students.

COMP372-14C (HAM) Computer Science Placement 2
20 points
This paper is only available to BSc(Tech) students.

COMP390-14A (HAM) & 14B (HAM) & 14C (HAM) & 14B (TGA) Directed Study
20 points
A directed study paper involving the design, implementation and testing of the solution to a hardware and/or software engineering problem; and production of a formal report.
Assessment Internal assessment/Final examination ratio 1:0.

COMPUTER SCIENCE PAPERS – 400/500 LEVEL

400/500 LEVEL PAPERS

COMP401/501-14A (HAM) Topics in Operating Systems
15 points
One or more topics in operating systems implementation at an advanced level.
Prerequisite Paper(s) Three 300 level Computer Science papers, including COMP301.
Restricted Paper(s) COMP412 and COMP512.
Assessment Internal assessment/Final examination ratio 1:0.

COMP413/513-14A (HAM) Topics in Computer Networks
15 points
One or more special topics in computer networks, at an advanced level.
Prerequisite Paper(s) (COMP202 and 60 points at 300 level in Computer Science) or COMP414/514 or COMP418/518.
Assessment Internal assessment/Final examination ratio 1:0.

COMP414/514-14B (HAM) Carrier and ISP Networks
15 points
This paper studies large scale networks as used for public internet infrastructure. It covers the technologies used to implement such networks in a practical manner.
Prerequisite Paper(s) (COMP312 and a further 40 points at 300 level in Computer Science) or COMP413/513 or COMP418/518.
Assessment Internal assessment/Final examination ratio 1:0.

COMP418/518-14B (HAM) Cyber Security
15 points
This paper covers large scale security of internet and mobile networks. It covers botnets, the underground economy and network scale security strategy.
Prerequisite Paper(s) (COMP202 and 60 points at 300 level in Computer Science) or COMP413/513 or COMP414/514.
Assessment Internal assessment/Final examination ratio 1:0.

COMP421/521-14A (HAM) Machine Learning Algorithms
15 points
This paper covers machine learning algorithms such as the ones implemented in the WEKA machine learning workbench at a more advanced level, including techniques that deliver state-of-the-art predictive performance.
Prerequisite Paper(s) Three 300 level Computer Science papers, including COMP321 or COMP316.
Assessment Internal assessment/Final examination ratio 1:0.
COMPUTER SCIENCE PAPERS – 400/500 LEVEL

COMP423/523-14A (HAM) Data Stream Mining
15 points
Data streams are everywhere, from F1 racing over electricity networks to news feeds. Data stream mining relies on and develops new incremental algorithms that process streams under strict resource limitations. This paper focuses on, as well as extends the methods implemented in MOA, an open source stream mining software suite currently being developed by the Machine Learning group.
Prerequisite Paper(s) Three 300 level Computer Science papers, including COMP321 or COMP316.
Assessment Internal assessment/Final examination ratio 1:0.

COMP424/524-14B (HAM) Interaction Design
15 points
This paper offers advanced topics in Interaction Design. It takes a practical approach to interaction design for better user experience.
Prerequisite Paper(s) COMP324 or COMP325.
Restricted Paper(s) CGRDS24, COMP438, COMP538.
Assessment Internal assessment/Final examination ratio 1:0.

COMP426/526-14B (HAM) Engineering Interactive Systems
15 points
This paper introduces the topic of engineering methods for interactive systems. It provides both the background theory and practical methods for modelling and testing interactive systems.
Prerequisite Paper(s) COMP340.
Assessment Internal assessment/Final examination ratio 1:0.

COMP427/527-14B (HAM) Cloud Computing Technologies and Security
15 points
This paper explores cloud computing’s underlying enabling technologies (eg virtualisation) and business models. It also covers key research topics in cloud computing security, trust and data privacy.
Prerequisite Paper(s) COMP312, COMP301.
Assessment Internal assessment/Final examination ratio 1:0.

COMP432/532-14B (HAM) Information Visualisation
15 points
Information visualisation is concerned with the design and implementation of presentations of often complex information in such a way that users are able to efficiently and effectively extract the relevant features in and for their given context, and are able to gain insight about the information which might not otherwise have been possible. This paper aims to provide an awareness of the potential offered by visualisation techniques, a familiarity with the underlying concepts, and an understanding and ability to effectively design and apply information visualisations in a given context.
Prerequisite Paper(s) Three 300 level Computer Science or Computer Graphic Design papers.
Restricted Paper(s) CGRDS32.
Assessment Internal assessment/Final examination ratio 1:0.

COMP436/536-14B (HAM) Advanced Graphics and Computer Games
15 points
A lecture and laboratory based paper on the use of 3D immersive computer game engines. Topics will include 3D modelling, texturing, lighting effects, use of pixel shaders, game physics, scripting of game play, and use of games engines for non game program development.
Prerequisite Paper(s) COMP336 and a further 40 points at 300 level in Computer Science.
Assessment Internal assessment/Final examination ratio 1:0.

COMP439/539-14A (HAM) Usability Engineering
15 points
This paper covers the design and evaluation of interactive computer systems with a focus on user studies. Topics covered include: designing and performing user studies ethnography, automated usability evaluation, and ethical issues involved in studying human-computer interaction.
Prerequisite Paper(s) Three 200 level Computer Science papers, including COMP325.
Restricted Paper(s) COMP425 and COMP525.
Assessment Internal assessment/Final examination ratio 1:0.

COMP440/540-14B (HAM) Software Engineering Methodologies
15 points
Agile methods are challenging conventional wisdom regarding systems development processes and practices, effectively putting process on a diet and investing in people and teams. This paper has a strong industry focus and will cover both the theory and practice of agile methods.
Prerequisite Paper(s) Three 300 level Computer Science papers, including COMP314 or COMP315.
Assessment Internal assessment/Final examination ratio 1:0.
15 points
This paper covers the operation of web search engines, the development of web spam and techniques for combating it, and social issues raised by centralised search engines.

Prerequisite Paper(s) Three 300 level Computer Science papers, and either COMP204 or COMP242.
Required Book(s) Web dragons: inside the myths of search engine technology, by Ian H. Witten, Marco Gori, and Teresa Numerico. Morgan Kaufmann, 2006.
Assessment Internal assessment/Final examination ratio 1:0.

COMP443/543-14B (HAM) Information Management
15 points
One or more special topics in Information Management, at an advanced level.

Prerequisite Paper(s) 60 points at 300 level in Computer Science, Philosophy, Management Communication or Management Systems.
Assessment Internal assessment/Final examination ratio 1:0.

COMP448/548-14A (HAM) Developing Mobile Applications
15 points
This paper will consider the design and implementation of applications for mobile devices covering topics such as: mobile application software architectures; development platform options; design and evaluation of small-screen touch-based user interfaces; leveraging technologies such as global positioning, near-field communication and orientation/environmental sensing; mobile web applications and publishing to application stores. Practical work will use the Android platform and so the paper is best-suited to students with experience of Java programming.

Prerequisite Paper(s) Either COMP316 or COMP321, and a further 60 points at 300 level in Computer Science.
Assessment Internal assessment/Final examination ratio 1:0.

COMP450/550-14A (HAM) Location-Based Systems as Context-Aware Systems
15 points
This paper will introduce techniques of location-based and context-aware systems (such as GPS and personalisation). Participants will develop a location-based system and evaluate its qualities as an information system. The lecturer has extensive experience with research in location-based systems – course participants will get hands-on experience with currently ongoing research systems.

Prerequisite Paper(s) COMP329.
Assessment Internal assessment/Final examination ratio 1:0.

COMP452/552-14A (HAM) Model Checking
15 points
This paper shows how reactive systems can be modelled and analysed using finite-state machines and temporal logic, and how model checking tools can be used to verify crucial properties of safety-critical systems. The paper also provides an introduction into the algorithms and data structures used to model check very large finite-state systems.

Prerequisite Paper(s) COMP235 and 60 points at 300 level in Computer Science.
Assessment Internal assessment/Final examination ratio 1:0.

COMP453/553-14A (HAM) Extremely Parallel Programming
15 points
This paper covers advanced parallel programming for large-scale parallelism. A variety of programming techniques will be covered, with application to cluster computers, CPU computing, many-core computing. This paper will be taught using a mixture of classroom and online delivery modes.

Prerequisite Paper(s) COMP203 and COMP204, or equivalent Java and JUnit experience.
Assessment Internal assessment/Final examination ratio 1:0.

COMP455/555-14B (HAM) Bioinformatics
15 points
An introduction to bioinformatics, open to students majoring in computer science or biology. It includes an overview of molecular biology, genomics, script language programming, algorithms for biological data, an introduction to machine learning and data mining.

Prerequisite Paper(s) 60 points at 300 level in Computer Science and/or Biology, including either COMP317 or BIOL310 plus STAT111 or STAT121.
Assessment Internal assessment/Final examination ratio 1:0.

COMP456/556-14B (HAM) Computational Finance
15 points
This paper is intended to introduce students to the applications of Artificial Intelligence (AI) in finance. Standard Computational Finance problems such as index tracking, algorithmic trading, and corporate failure prediction will be investigated, and students will learn how to solve these problems using advanced computational techniques from the AI research literature, such as natural computing and data mining.

Prerequisite Paper(s) Either COMP316 or COMP321, and a further 40 points at 300 level in Computer Science.
Assessment Internal assessment/Final examination ratio 1:0.
COMPUTER SCIENCE PAPERS – 400/500 LEVEL

COMP460/560-14A (HAM) Turing Topics
15 points
One or more special topics in computer science, at an advanced level.

Prerequisite Paper(s) Three 300 level Computer Science papers.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s) Admission to this paper is at the discretion of the Chairperson of Department.

COMP477-14B (HAM) Report of an Investigation
20 points
A directed study investigation and report on an approved project or study topic under the supervision of a lecturer. Students should obtain the lecturer’s approval and signature on a directed study enrolment sheet (available from the Computer Science department office).

Prerequisite Paper(s) Students must qualify for entry according to the criteria determined by the Dean.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s) This paper is available only to students undertaking a non-honours degree programme for the BCMS by permission of the Dean.

COMP520-14C (HAM) Report of an Investigation
45 points
A directed study investigation and report on an approved project or study topic under the supervision of a lecturer. Students should obtain the lecturer’s approval and signature on a directed study enrolment sheet (available from the Computer Science department office).

Prerequisite Paper(s) Students must qualify for entry according to the criteria determined by the Dean.
Restricted Paper(s) COMP420 and MATH520.
Assessment Internal assessment/Final examination ratio 1:0.

COMP589-14D (HAM) & 14E (HAM) Programming for Research
30 points
This paper is intended to develop programming skills appropriate to proceed to research in a range of computer science topics. This paper is normally required for a Postgraduate Diploma in Computer Science.

Prerequisite Paper(s) Admission to PGDip or PGCert programme in Computer Science or Computer Graphic Design.
Assessment Internal assessment/Final examination ratio 1:0.

COMP590-14D (HAM) & 14E (HAM) Research in Computer Science
30 points
This paper is intended to develop skills in planning, conducting and reporting research to a level where a student could appropriately undertake masters-level thesis study in computer science. This paper is normally required for a Postgraduate Diploma in Computer Science.

Prerequisite Paper(s) Admission to PGDip or PGCert programme in Computer Science or Computer Graphic Design.
Assessment Internal assessment/Final examination ratio 1:0.

ENGG501-14A (HAM) Control Theory and Image Processing
30 points
This paper involves directed reading, project work and paper presentation in a defined topic area of electronics.

Prerequisite Paper(s) ENEL317.
Restricted Paper(s) ENGG401.
Required Book(s) Franklin et al., Feedback Control of Dynamic Systems 5th ed (Prentice Hall).
Assessment Internal assessment/Final examination ratio 1:0.

ENEL517-14A (HAM) Mechatronics
30 points
This paper covers embedded micro-programming, feedback control, interface to electro-mechanical systems involving gears, motors, belt drivers, actuators, and sensors: the enabling technologies of robotics. A series of projects require students to integrate software, control, mechanical and electromotive skills to achieve practical goals.

Prerequisite Paper(s) ENEL317.
Assessment Internal assessment/Final examination ratio 1:0.
Note(s) This paper will only be offered with sufficient student interest.
Computer Science is the body of knowledge dealing with the design, analysis, implementation, efficiency and application of processes that transform information. The fundamental question underlying all of computer science is: “What can be automated?” Out of this question many new professions have arisen and our graduate programmes in computer science prepare you for them as a leader, an innovator, a practitioner at the cutting edge of technology.

The Department of Computer Science is involved in a wide range of exciting and innovative research that transcends the boundary between theory and practice. Individual staff members and their students undertake many research projects. There are some large government-funded group projects that deserve special mention. One is looking broadly at machine learning, from theoretical foundations through practical tools, to applications in New Zealand’s industries. Another is analysing computer networks. A third is concerned with collaborative information gathering and the application of large interactive display surfaces. A fourth is looking at research issues in digital libraries and novel interfaces for retrieving and browsing information, offering a widely used international digital library service. The fifth is developing languages and tools for modelling automated systems and reasoning about the models. As well as these group research projects, there are a host of other research activities within the department. The Computer Science Department is youthful and enthusiastic, and has a distinctly international flavour with many academic staff boasting experience from North America and Europe. The research laboratories are well equipped with high-end modern workstations of all types, as well as grunty computation servers and file servers.

For more information on our activities, see our web pages at: www.cs.waikato.ac.nz

At Waikato, research is fun – fun we take very seriously. Come and join in.
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

Research activities in the Department take place in seven research groups. Although many staff participate in projects across different groups we have arranged the descriptions below into the seven areas. In practice there is considerable overlap between the activities in the various groups.

CYBER SECURITY GROUP

Geoff Holmes, Ryan Ko, Tony McGregor, Richard Nelson

The Cyber Security Researcher of Waikato (CROW) aims to return control of data to data owners, by focusing on research addressing data security from a user-centric perspective. With the emergence of cloud computing technologies and prevalent mobile device usage, we are witnessing the diminishing effectiveness of traditional cyber security approaches such as perimeter defence, intrusion detection and infrastructure hardening.

A major focus of the Cyber Security Laboratory is developing fundamental algorithms and innovative solutions which will enable users to know their data provenance, or “what has happened to their data”. Data provenance empowers data stakeholders to understand the evolution and derivation history of their data, and empowers other important technologies such as data leakage prevention, malicious insiders in cloud computing environments or behaviour-based detection of malware. After the successful acquisition or recording of provenance information, effective ways to visualise these multi-dimensional data sets in user-intuitive techniques are tantamount. The group has a large-scale cloud computing test bed for the realistic testing and verification of our tools. Another major focus is on preserving both the privacy and utility of data. If encrypted data can be processed in servers without the need to be decrypted, the privacy of data in foreign environments will be addressed effectively. The lab is currently working on practical and efficient techniques addressing this.

Together with New Zealand industry partners, multi-national companies and international consortia such as the Cloud Security Alliance, the lab also works on discovering and disclosing vulnerabilities that exposes user data to dangers in both systems and network. The Lab also aims to invent techniques that effectively eradicate the effects of new-generation malicious software.

The lab actively contributes to teaching and research for the new Master of Cyber Security degree. Graduate papers offered in this area of research are COMP514, COMP518 and COMP527. Please see pages 83-84 for more details. General graduate study information can be found on pages 15-27.

SAMPLE PUBLICATIONS

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

DIGITAL LIBRARY GROUP

Mark Apperley, David Bainbridge, Sally Jo Cunningham, Annika Hinze, Steve Jones, Te Taka Keegan, David Nichols, Ian Witten

The migration of information from paper to electronic media promises to change the whole nature of research and, in particular, the methods by which people locate information. The goal of the New Zealand Digital Library project (www.nzdl.org) is to explore the potential of internet based digital libraries. Our vision is to develop systems that automatically impose structure on fundamentally anarchic, uncatalogued, distributed repositories of information, thereby providing information consumers with effective tools to locate what they need and peruse it conveniently and comfortably.

We have developed an open source digital library system called Greenstone (www.greenstone.org) which is widely used in many countries all over the world and has also been adopted to deliver humanitarian information in developing countries. The software makes it easy to produce collections on CD-ROM, which is a practical format for areas with little internet access. The same collections are also available in precisely the same form over the web.

The user interacts through any standard web browser and the software incorporates a web server so that if the system happens to be connected to an intranet (e.g. in a hospital or school) the information is automatically served to other machines on the network. Many Greenstone CD-ROMs have been produced from various organisations, including NGOs and several UN agencies. UNESCO has adopted Greenstone and works with us to distribute it widely throughout the developing world. We collaborate with the UN FAO on the dissemination of agricultural information; the Humanities Library Project in Belgium on creating new information collections; and the Koha Foundation, USA, on equipping people in developing countries with the ability to create and distribute their own information collections.

Our present research is aimed at re-engineering Greenstone to take account of emerging XML-based standards; extending it into a full content management system; looking at novel interfaces for retrieval and browsing that cater to a wide spectrum of users; monitoring usage to study library users’ needs; and developing methods for inferring bibliographic information from document files and using this information to enhance presentation and for bibliometric research.

Graduate papers offered in this area of research are COMP537, COMP542 and COMP543. Please see page 86 for more details. General graduate study information can be found on pages 15-27.
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

SAMPLE PUBLICATIONS

Further details on the group can be obtained from the group’s website at: www.nzdl.org

HUMAN-COMPUTER INTERACTION GROUP

Mark Apperley, Judy Bowen, Sally Jo Cunningham, Annika Hinze, Lyn Hunt, Steve Jones, Te Taka Keegan, Simon Laing, Masood Masoodian, David Nichols, Bill Rogers, Nicholas Vanderschantz, Ian Witten

HCI is the noble face of computer science. The discipline is concerned with designing, implementing and evaluating human-computer interface technologies over an ever-expanding range of applications and environments, as computer technology becomes increasingly pervasive. It involves understanding how computer technology can better fit user needs, and provides theories and tools to assist developers in making useful and usable systems. The work of this research group at Waikato covers many aspects of HCI, including:

» Mobile Devices, Interaction and Applications
» Interaction Design
» Interfaces for Information Retrieval
» Information Visualisation
» Computer-Supported Collaborative Work
» Open Source Usability
» Indigenous Language Interfaces
» User Centred Design (including Formal Methods)
» Knowledge-Based Interfaces
» Smart Environments and Pervasive Computing

The team is actively engaged in these research areas across a wide range of applications, including meeting support, energy management, realistic virtual books, digital libraries, children’s on-screen reading, virtual travel, environments for knowledge workers, second language learning and location awareness. There are extensive connections with the international research community through publication in key journals and conferences, and reflected in visits from leading HCI researchers.

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

The group has a range of apparatus and infrastructure available for research students including a usability laboratory, large interactive displays, table-top displays, PDAs, GPS units, mobile audio devices, multi-layered display units, vision tracking systems and sketching interaction tools.

Graduate papers offered in this area of research are COMP524, COMP532, COMP538 and COMP539. Please see pages 84-85 for more details. General graduate study information can be found on pages 15-27.

SAMPLE PUBLICATIONS

Further details on the group can be obtained from the group’s website at: www.cs.waikato.ac.nz/research/hci/
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

MACHINE LEARNING GROUP
Eibe Frank, Geoff Holmes, Michael Mayo, Bernhard Pfahringer, Tony Smith, Ian Witten

Machine learning is concerned with the task of automatically extracting useful information from data. The aim is to identify patterns that can be used to understand the domain from which the data was collected and to make predictions. Consider the task of constructing a spam filter for email messages. Instead of laboriously creating a hand-crafted set of filtering rules, we can use machine learning to extract patterns that differentiate spam from ham, based solely on a collection of messages that have been labelled as spam and ham respectively, and then use those patterns in the filter. Consider the task of understanding customer preferences by mining for interesting patterns in supermarket checkout data. There are efficient algorithms that can automatically extract those patterns in the form of simple if-then rules. Given the availability of vast amounts of raw data in electronic form, there is a plethora of applications for machine learning techniques.

Our team works on new, more efficient, algorithms for machine learning and data mining as well as new applications. We are well known for a software “workbench” called the Waikato Environment for Knowledge Analysis (WEKA), which contains a large number of machine learning techniques. WEKA is widely used for research, teaching, and commercial applications of machine learning. It has been used to help determine what information dairy farmers use in deciding which cows to keep in their herds, been applied to bioinformatics problems such as gene interaction discovery, and been used for many other applications such as mining supermarket transaction data for high profit product associations, predicting the levels of chemicals like nitrogen and carbon in soils to aid farmers’ fertilizer decisions, and processing natural language to extract keywords from documents.

Graduate papers offered in this area of research are COMP521, COMP523, COMP555 and COMP556. Please see pages 83-87 for more details. General graduate study information can be found on pages 15-27.

SAMPLE PUBLICATIONS
Sarjant, S., Pfahringer, B., Driessens, K. and Smith, T. (2011) ”Using the online cross-entropy method to learn relational policies for playing different games.” Proc 2011 IEEE Conference on Computational Intelligence and Games (CIG), Seoul, South Korea, August, 182-189. IEEE.

WAND COMPUTER NETWORKS GROUP
Tony McGregor, Richard Nelson

Computer networks, including the internet, are having an ever-increasing impact on everyday life. Computer networks come in many shapes and sizes. The internet is the largest man-made structure, while bluetooth networks may cover just a desktop. The WAND group is the department’s computer networks research group. One major focus of the WAND group is developing high performance networks. This work starts with designing and building measurement tools and techniques to study real networks. The data obtained from measurement can be used directly for management or used to build simulation models and perform detailed analysis of a range of possible scenarios perhaps including networks that can not currently be built. The WAND group is also developing visualisation software to display network traffic and aid in understanding the behaviour of measured networks and simulations. The group has a large test bed network for emulating real networks. This is used for development of tools and protocols, verification of our simulations and for testing new network devices.

Another major focus of the group is long distance wireless networks. The main project in this area is looking at connecting rural communities using low cost wireless technologies. Aspects of this work include developing network management systems, developing new routing algorithms and designing hardware including wireless NIC cards. As a part of this work the group has built wireless networks connecting rural schools and communities in the Waikato and Te Urewera National Park areas. Networks have also been built in the Pacific Islands and rural South Africa. The group is also embarking on a rapid deploy project looking at how wireless networks can be deployed in a matter of hours using minimal levels of expertise for disaster recovery and also for special events.

Graduate papers offered in this area of research are COMP513, COMP514. Please see page 83 for more details. General graduate study information can be found on pages 15-27.
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

SAMPLE PUBLICATIONS

Further details on the group can be obtained from the group’s website at: www.cs.waikato.ac.nz/research/wand/

FORMAL METHODS GROUP

Judy Bowen, Robi Malik, Steve Reeves, Mark Utting

Established in 1998, this is the first Formal Methods laboratory in New Zealand. The work that goes on in this lab is based on the view that programming is at the heart of computer science. It is also based on the view that, as engineers and scientists, we should use the machinery of mathematics to model and reason about the systems that we build before we build them. This is in contrast with the view that programs should be written by trial and error (usually at great expense and with a high likelihood of failure, judged by current experience) with our users ironing out our mistakes for us at their expense. To this end, we are developing languages and tools for modelling systems, for reasoning about those models and for transforming them into code in a way that is guaranteed to preserve meaning and correctness. We do not want to build software that usually works – we want software that always works, and in the way intended by the requirements.

One particular project is aimed at producing methods that will allow the development of user interfaces to the same level of dependability as the functional part of a system. We are also developing tools for generating test suites from specifications, to improve the cost-effectiveness of testing. We are investigating languages and logics for dealing with refinement at a general level, and techniques for developing discrete event systems.

Driving the work of the lab are problems that we have been presented with by various parts of the New Zealand (and beyond) software development industry. This means that we can be sure our work is going to be useful for solving problems that are important to people outside the research environment.

Graduate papers offered in this area of research are COMP552 Model Checking and COMP554 Specification Languages and Models. Please see page 87 for more details. General graduate study information can be found on pages 15-27.

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

SAMPLE PUBLICATIONS

Further details on the group can be obtained from the group’s website at: www.cs.waikato.ac.nz/research/fm/

INFORMATION SYSTEMS AND DATABASES GROUP

Annika Hinze

Most of the computer applications you encounter today are in fact Information Systems, that means, systems that manage, store and deliver information to users. Examples are search engines like Google, ticket booking systems, or online stores. Exciting new kinds of applications that we look at in the ISDB group are mobile tourist information systems, memory-aid systems and systems that notify you about changes, eg, in web pages or online shops. Our latest projects are context-aware systems that deliver information to their users depending on a user’s location, time of the day, task, or mood.

Inside these systems, the data is often stored in a database or another complex storage system. The Information Systems and Databases Group (ISDB) is interested in both — the underlying technical and the application aspects of computer systems. We are working on different types of information systems, addressing a wide range of challenges.

A list of our projects includes:

» A mobile tourist information system (TIP) that provides travellers with up-to-date information about sights and recommends upcoming interesting events and locations to visitors. One aspect of TIP that we recently incorporated is a link to an interactive map service and a digital library. We also support a kind of mobile wikipedia for travellers and a personalised mobile gallery. For this project we co-operate with the HCI and the DL group as well as with the formal methods group. We also work with the Waikato Museum and investigate how to capture ways of different cultures, Māori and Pākehā, to approach the notion of place and history.

» An electronic parrot – a personalised extension of your memory that will make it easier to remember people, events, and data. This project was started just recently. We are concerned with questions like: How can we describe, store and access the data? What would a useful interface look like?
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

We also look at aspects of events and change management in the semantic web, in digital libraries, and in health care. In addition, we focus on the more technical side of information systems by analysing distributed event notification.

We are the youngest group in the department. That also means that a lot of our projects are done with close co-operation and support by our students in the department.

A graduate paper offered in this area of research is COMP543. Please see page 86 for more details. General graduate study information can be found on pages 15-27.

SAMPLE PUBLICATIONS

Further details on the group can be obtained from Annika Hinze, email: hinze@waikato.ac.nz

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

THE JSTAR PROJECT

Mark Utting and John Cleary

A sea-change has occurred in recent years in programming. Computers are no longer getting faster but they continue to grow in the number of transistors. This poses a problem because it is now necessary to write programs that can do many things at the same time (that is, execute in parallel) in order to utilise these additional transistors. The widely-used programming languages of today were not designed for parallel computers, so parallel programming is currently difficult and costly. This is beginning to restrict what is possible for important problems, like forecasting global warming, searching DNA sequences and improving the efficiency of aeroplanes.

We aim to make it easy to write high-performance parallel programs that can be retargeted to a wide variety of computer architectures. We are developing a new style of parallel programming, which separates the program logic from the parallelism details, and enables a program to be moved easily from one computer architecture to another. Our notations and tools will make parallel programming accessible to programmers who are not experts in parallelism, and will enable their programs to run efficiently on the multi-core CPUs that are now widespread and the many-core CPUs of the future.

The language we are designing is called JStar. Its semantics is similar to the Starlog language that we developed over the last decade, but JStar has a more Java-like syntax, and will be designed for efficient transformation to run on parallel computers. We plan to develop smart compilers that will transform JStar programs to run on cluster computers (like Symphony in S Block) as well as on GPUs and many-core computers. In the longer term, we’re also interested in transforming JStar programs into FPGA hardware designs for superfast computation.

A graduate paper offered in this area of research is COMP553. Please see page 87 for more details. General graduate study information can be found on pages 15-27.

SAMPLE PUBLICATIONS

Further details on the group can be obtained from the group’s website at: www.cs.waikato.ac.nz/research/jstar/
GRADUATE THESES

PHD STUDENTS

R. Akscyn The productivity of knowledge work.
K. Bahiss Communication software for intellectually disabled individuals.
A. Darwish Information retrieval system and natural language processing.
D. Denny Developing a comprehensive and physically accurate simulation model for combustion in real-time rendering.
S. Eichler Implementing internet black hole and topology analysis with large numbers of vantage points.
R. Giganto Using a controlled language for requirements document and generation user CASE specifications.
C. Grout Desktop environments in virtual reality and the usability impacts of an adjusting workspace paradigm.
P. Hunkin Distributed operating systems for wireless sensor networks.
M. Kasi Semantic data integration in a large-scale sensor network.
S. Laing Image selection on a design context: The development of a system for image retrieval in support of graphic design.
A. Lof Using machine learning to detect events in traffic flows.
P. Mato What is the role of computer technology within a Māori language regeneration strategy.
I. McDonald Congestion control for real-time media applications.
P. Monigatti Large-scale micro-management of domestic electricity consumption.
B. Nemhauser Spatial hypermedia as a programming environment.
M. Rinck Connecting information: detecting and tracing object evolution.
F. Shiblaq Localisation provision: Arabic speakers’ preference on para-lingual website-layout.
Q. Sun Metalearning and the full model selection problem.
J. Suppers Smart grids, the internet of energy, and energy use efficiency.
Y.-S. (Alan) Tan Context-based generation of provenance data.
J. Thompson Architectures for the parallel processing of very large scale digital libraries.
C. Timpany How the typographic relationships between access structure features (headings) improve within document search and retrieval tasks.
E. Turner Adaptive user interfaces for the semantic web.

THESES IN PROGRESS

M.A. Alahmari Improving children’s learning with e-books and digital libraries.
M. Alansari Automatic creation of dynamic second language reading texts.
A. Wang Anomaly detection on large scale computer networks.
S. Ware Verifying nonblocking in discrete event systems using abstraction.

RECENTLY COMPLETED GRADUATE THESES

PHD STUDENTS

G. Anderson Random relational rules.
S. Bartels Development of wireless network planning software for rural community use.
S. Bittner General Boolean expressions in publish-subscribe systems.
A. Blake Biologically motivated real-time motion sensor.

M. Alansari Off-grid energy monitoring.
M. Alansari Keeping track of reading material.
A. Alsharif Investigating the use of clone detection to support the reverse-engineering of interactive systems.
S. Alzahrani How to take an ebook off the shelf.
A. de Lange Power grid simulation.
A. Dighe HWC – refining physical documents in an office environment.
D. Hoffman Predicting cattle disease from behaviour.
Y.-H. Huang Collaborative drawing in HTML.
M. Markose Monitoring and reducing cloud computing vulnerabilities, outages, and failures.
M. May 60GHZ Network Simulation.
M. Mungro Rating the significance of detected network events.
K. Neelakanta Database-backed redundant Open Flow controllers.
A. Shaw Partial order reduction with compositional verification.
B. Si XNA development on the Raspberry Pi.
G. Smialowski Drystock walkover weighing.
L. Wang XNA on Raspberry Pi.
M.-H. Weng Automatic parallelization of data-driven JStar programs.
S. Wadsworth LTE security.
GRADUATE THESES

RECENTLY COMPLETED GRADUATE THESES continued

PHD STUDENTS continued

J. Bowen
Formal models and refinement for graphical user interface design.

J. Catchpole
Adaptive vision based scene registration for outdoor augmented reality.

H. Gaukrodger
Providing computer-assisted, two-way feedback in formative assessment: An innovation supporting best educational practice.

S. Jansen
Network simulation cradle.

M. Jervis
Supporting tangible user interaction with integrated paper and electronic document management systems.

R. Kirkby
Improving Hoeffding trees.

K. Hempstalk
Continuous typist verification using machine learning.

D. Jung
Specifying single-user and collaborative profiles for alerting systems.

O. Medelyan
Human-competitive automatic topic indexing.

A.B. Mohd Yusof
Supporting focus and context awareness in 3D modeling using multi-layered displays.

S. Sarjant
Policy search based relational reinforcement learning using the cross-entropy method.

G. Schmidberger
Tree-based density estimation: algorithms and applications.

A. Krishnan
Pervasive personal information spaces.

V. Liesaputra
Realistic electronic books.

D. Milne
Applying Wikipedia to interactive information retrieval.

S. Raynel
Hidden terminal detection in wide-area 802.11 wireless networks.

J. Read
Scalable multi-label classification.

S. Wu
Supporting collocation learning.

L. (Anna) Huang
Concept-based text clustering.

S. Mutter
Sequence-based protein classification: Binary profile hidden markov models and propositionalisation.

A. Schweer
Augmenting autobiographical memory: an approach based on cognitive psychology.

C. Taube-Schock
Patterns of change: can modifiable software have high coupling?

Y. Zhang
Improving bags-of-words model for object categorization

MASTERS STUDENTS

JM. Al Mutirui
Power and energy visualisation in the home.

S. Al-Qahtani
The paperless organization: Improved processes and reduction in paper usage through wider use of electronic documents and tablet computers.

M. Alahmari
Personal semantic timeframe.

J. Alallah
Capturing situational context in an augmented memory system.

M. Alrowaily
Energy monitoring through social networks.

M.A. Alshahrani
Real time vehicle license plate recognition on mobile devices.

H. Alyamani
CatchIt: Capturing cues of bookmarked moment to feed digital parrot.

S.-P. Chang
Questions and answers: Exploring mobile user needs.

G. Clarke
Visualising time.

J. Cocks
Diacritic restoration and the development of a part-of-speech tagset for the Māori language.

S. Crosby
Parallelization of JStar programs on a distributed computer.

C. Deaker
Adaptive interfaces for massively multi-player online games.

J. Dean
Using motion controllers in virtual conferencing.

S. Eichler
Measuring TCP congestion control behaviour in the internet.

Z. Han
Smoothing in probability estimation trees.

A. Jose
Evolution of documents: Information and data objects.

B. Laundry
Sheet music unbound: A fluid approach to sheet music display and annotation on a multi-touch screen.

F. Lin
Analysing reverse engineering techniques for interactive systems.

J. Ma
Parameter tuning using Gaussian processes.

P. Morris
Exploration of pervasive games in relation to mobile technologies.

S. Peng
A location-based audio book reader.

T.D. Pham
Visualize online collocation dictionary with force-directed graph.

M. Roüast
Live television in a digital library.

Y.-N. Tsai
Vocal detection: An evaluation between general versus focused models.

F. Zeng
Using output codes for two-class classification problems.

C. Zhao
Anonymous mobile service collaboration.

MASTER OF ENGINEERING (ME)

P. Cader
An interactive user management system for multilingual documents: A case study of the Pei Jones collection.

S. Sathe
Supporting meetings in virtual worlds with enhanced communication features.
WHY STUDY MATHEMATICS

A graduate with a mathematics degree, or even with a strong mathematical component to his/her degree, is a valuable person in today’s world. Studying mathematics in combination with another area means you can work on problems in other fields such as chemistry, biology, earth sciences, medicine, computing, economics, finance, engineering, physics, electronics, banking and meteorology, to name just a few. A solid mathematics background also makes it easy to have a career in teaching. In fact, mathematics is used in almost every type of business, large and small. And it can be profitable and exciting.

GRADUATES HAVE STARTED THEIR CAREERS IN JOBS SUCH AS:

» A strategic management consultant in Auckland.
» A system implementation analyst for the Waikato Health Board.
» A consents engineer for the Waikato District Council.
» A data analyst for Environment Waikato.
» A payments analyst for TrustPower.
» A manager for ANZ Bank.
» A policy analyst for the Treasury.
» A technical associate for UNISYS – an international IT consulting firm.
» A model analyst for the Ministry of Economic Development.
» A market analyst for Genesis Energy.
» A risk management analyst for the Reserve Bank.
» A financial data analyst for the Far North District Council.

MATHEMATICS STAFF

CHAIRPERSON
Dr Ian Hawthorn

SECRETARY
Glenys Williams
Email: glenys@waikato.ac.nz

PROFESSORS
Kevin Broughan
BSc MSc NewPhDColMACMIPENZFNZMS
Email: kab@waikato.ac.nz
Analytic and algebraic number theory; mathematical software; symbolic computation; dynamical systems.

Ian Craig
BSc(Hons) PhD Lond
Email: math0097@waikato.ac.nz
Astrophysical plasmas; magnetohydrodynamics and radiation theory; inverse problems and remote sensing; magnetic reconnection in superconducting plasmas.

Ernie Kalnins
BSc(Hons) MSc PhD W Ont FRSNZ
Email: math0236@waikato.ac.nz
Special functions; quantum groups; general relativity.

ASSOCIATE PROFESSORS
Stephen Joe
BSc(Hons) MSc Massey PhD NSW
Email: stephenj@waikato.ac.nz
Lattice methods for multiple integration; numerical multiple integration.

Sean Oughton
BSc(Hons) Well PhD Del
Email: seano@waikato.ac.nz
Turbulence and nonlinear dynamics in conducting fluids and space physics.

SENIOR LECTURERS
Nicholas Cavenagh
BSc(Hons) MSc PhD Qld
Email: nickc@waikato.ac.nz
Combinatorics: latin squares; defining sets; graph decompositions; graph labellings.

Daniel Delbourgo
BSc(Hons) Tas PhD Camb
Email: delbourg@waikato.ac.nz
Elliptic curves; modular forms; Iwasawa theory.

Ian Hawthorn
BSc(Hons) MSc Auck PhD Minn
Email: hawthorn@waikato.ac.nz
Group theory; classes of finite groups; symmetry.

Yuri Litvinenko
MSc Moscow PhD NH
Email: yuril@waikato.ac.nz
Solar activity; magnetohydrodynamics of astrophysical plasmas; magnetic reconnection.

Tim Stokes
BSc(Hons) PhD Tas
Email: stokes@waikato.ac.nz
Algebraic representations of partial maps; radical theory for general algebras; free surface problems in fluid mechanics.

LECTURER
Woei Chet Lim
BMath(Hons) MMath PhD Waterloo
Email: wclim@waikato.ac.nz
Inhomogeneous cosmology; numerical partial differential equations; general relativity; dynamical systems.

RESEARCH FELLOW
Frederic Effenberger
Diplom PhD Ruhr-Univ. Bochum

HONORARY FELLOWS
Alfred Sneyd
BA, BSc, MSc Auck PhD Camb

John Turner
MSc Leeds DPhil Waik

HONORARY RESEARCH ASSOCIATE
A. Ross Barnett
MSc Well DPhil Oxf
MAJOR – MATHEMATICS – BSc

If you wish to do a three-year degree which provides a solid grounding in mathematics, then you may consider doing a BSc degree majoring in Mathematics. Doing mathematics helps you to develop analytical skills and logical thinking that are valuable outside mathematics itself. Such skills are attractive to a wide range of employers. Besides mathematics papers, majoring students usually include some papers in Computer Science and in Statistics.

If you are also interested in economics and finance, you may prefer to choose the BSc specialisation in either Economics or Finance.

YEAR 1 – 120 POINTS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH101A/B</td>
<td>Introduction to Calculus</td>
<td>100 Level</td>
</tr>
<tr>
<td>MATH102A/B</td>
<td>Introduction to Algebra</td>
<td>100 Level</td>
</tr>
<tr>
<td>STAT121A</td>
<td>Introduction to Statistical Methods</td>
<td>100 Level</td>
</tr>
<tr>
<td>COMP103A/B†</td>
<td>Introduction to Computer Science 1</td>
<td>100 Level</td>
</tr>
<tr>
<td>COMP104B†</td>
<td>Introduction to Computer Science 2</td>
<td>100 Level</td>
</tr>
</tbody>
</table>

YEAR 2 – 120 POINTS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH251A</td>
<td>Multivariable Calculus</td>
<td>200 Level</td>
</tr>
<tr>
<td>MATH253A</td>
<td>Linear Algebra</td>
<td>200 Level</td>
</tr>
<tr>
<td>MATH2YY††</td>
<td>10 points</td>
<td>200 Level</td>
</tr>
</tbody>
</table>

YEAR 3 – 120 POINTS

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Paper Title</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH311A</td>
<td>Advanced Calculus</td>
<td>300 Level</td>
</tr>
<tr>
<td>MATH3XX</td>
<td>Statistics for Science</td>
<td>200 Level</td>
</tr>
<tr>
<td>MATH3YY††</td>
<td>10 points</td>
<td>200 Level</td>
</tr>
</tbody>
</table>

* This elective 100 level paper should be recognised as a Science paper not from Computer Science, Mathematics or Statistics.
** These elective papers should be recognised as Science papers.
*** These elective papers may be from any subject. Electives may be replaced by papers at a higher level.
† BSc regulation 8 requires 105 points at 100 level across at least four science subjects. COMP103, COMP104, STAT111/STAT121 will help satisfy these requirements and are strongly recommended in their own right. These papers also help students keep their options open for changing to another major with the Faculty if desired.
†† These ten point papers may be replaced by COMP235.
††† This paper may be replaced by COMP340.

ADMISSION TO HONOURS PROGRAMME

Candidates will require a major in Mathematics in the BSc degree with an average grade of B in 80 points in 300 level Mathematics. There are no special paper requirements other than those implied by the BSc(Hons) degree regulations.

DOUBLE MAJOR

For a double major, students must complete:
- 120 points at 100 level
- 120 points at 200 level – 60 points in each major
- 120 points at 300 level – 60 points in each major

DOUBLE MAJORS IN COMPUTER SCIENCE AND MATHEMATICS

Flexible double major programmes in Computer Science and Mathematics are available. Students with this qualification should be very attractive to employers, but it is also ideal for students interested in areas such as artificial intelligence, formal methods, the theory of algorithms, and data mining.

The paper COMP235 Logic and Computation can count towards either major, as can COMP340 Reasoning about Programs. Some of the specific papers required for a Mathematics Major can be waived, although MATH251 and MATH253 will always be required. Students may be permitted to replace 20 points of Mathematics papers above 100 level with 20 points of Statistics papers at the same level. The most suitable 300 level Mathematics papers are MATH310 Modern Algebra and MATH320 Discrete Mathematics and Number Theory.
BACHELOR OF COMPUTING & MATHEMATICAL SCIENCES (BCMS(Hons))

With a good mathematics degree you will be attractive to employers in a wide range of occupations, not just those directly using Mathematics. This is because your degree is a demonstration that you have problem-solving skills and clear analytical thinking.

SPECIALISATIONS

The BSc/BCMS(Hons) majors in mathematics have specialisations which offer you the opportunity to take a three/four-year degree combining mathematics with either economics or finance. These specialisations are aimed at students who wish to choose a career from a range of stimulating positions in banking, the Treasury or Reserve Bank, stock market firms, finance houses, including financial and economic modelling. Recent graduates have started their careers at ANZ Bank, Genesis Power, Ministry of Economic Development, New Zealand Treasury, Reserve Bank of New Zealand, and UNISYS.

Students doing either of the two specialisations need to do the listed compulsory papers, but may wish to include some papers from the other specialisation in their degree. Able students may wish to consider doing a BSc/BCMS double major with one major in Mathematics and the other major in either Economics or Finance.

For further details about a double major, contact the Department of Mathematics (maths@waikato.ac.nz). These pages set out the requirements for recognition of the Economics or Finance specialisations.

Note(s): The papers listed are the compulsory papers. The other requirements of the BSc/BCMS(Hons) degree regulations must also be met.

BSc MAJOR IN MATHEMATICS WITH SPECIALISATION IN ECONOMICS

100 LEVEL COMPULSORY PAPERS

- MATH101 Introduction to Calculus (15 points)
- MATH102 Introduction to Algebra (15 points)
- STAT121 Introduction to Statistical Methods (15 points)
- or
- STAT111 Statistics for Science (15 points)
- COMP103 Introduction to Computer Science 1 (15 points)
- COMP104 Introduction to Computer Science 2 (15 points)
- ECON100 Business Economics and the New Zealand Economy (15 points)

200 LEVEL COMPULSORY PAPERS

- MATH251 Multivariable Calculus (10 points)
- MATH252 Elements of Analysis (10 points)
- MATH253 Linear Algebra (10 points)
- MATH255 Differential Equations (10 points)
- Plus 20 points of MATH 200 level papers.
- ECON200 Macroeconomics and the Global Economy (20 points)
- ECON202 Microeconomics and Business Economics (20 points)

Note(s): STAT221 is recommended as a 200 level paper in the specialisation.
SPECIALISATIONS

300 LEVEL COMPULSORY PAPERS
MATH311 Advanced Calculus (20 points)
Plus 40 points of MATH 300 level papers.
Plus at least 20 points from ECON 300 level papers with 40 points recommended.

Note(s): In the 40 points of MATH 300 level papers, it is recommended that this include MATH331 Methods of Applied Mathematics. Twenty points of MATH 300 level papers may be replaced by a STAT 300 level paper or ECON304.

BSc MAJOR IN MATHEMATICS WITH SPECIALISATION IN FINANCE

100 LEVEL COMPULSORY PAPERS
MATH101 Introduction to Calculus (15 points)
MATH102 Introduction to Algebra (15 points)
STAT121 Introduction to Statistical Methods (15 points) or
STAT111 Statistics for Science (15 points)
COMP103 Introduction to Computer Science 1 (15 points)
COMP104 Introduction to Computer Science 2 (15 points)

Recommended:
ECON100 Business Economics and the New Zealand Economy (15 points)

200 LEVEL COMPULSORY PAPERS
MATH251 Multivariable Calculus (10 points)
MATH252 Elements of Analysis (10 points)
MATH253 Linear Algebra (10 points)
MATH255 Differential Equations (10 points)
Plus 20 points of MATH 200 level papers.

ECON200 Macroeconomics and the Global Economy (20 points)
ECON202 Microeconomics and Business Economics (20 points)

Note(s): STAT221 is recommended as a 200 level paper in the specialisation.

300 LEVEL COMPULSORY PAPERS
MATH311 Advanced Calculus (20 points)
Plus 40 points of MATH 300 level papers.
Plus at least one of:
FINA201 Finance

Note(s): STAT221 is recommended as a 200 level paper in the specialisation.

SPECIALISATIONS

BCMS(Hons) MAJOR IN MATHEMATICS WITH SPECIALISATION IN ECONOMICS

100 LEVEL COMPULSORY PAPERS
MATH101 Introduction to Calculus (15 points)
MATH102 Introduction to Algebra (15 points)
STAT121 Introduction to Statistical Methods (15 points) or
STAT111 Statistics for Science (15 points)
COMP103 Introduction to Computer Science 1 (15 points)
COMP104 Introduction to Computer Science 2 (15 points)
ECON100 Business Economics and the New Zealand Economy (15 points)

200 LEVEL COMPULSORY PAPERS
MATH251 Multivariable Calculus (10 points)
MATH252 Elements of Analysis (10 points)
MATH253 Linear Algebra (10 points)
MATH255 Differential Equations (10 points)
Plus 20 points of MATH 200 level papers.

ECON200 Macroeconomics and the Global Economy (20 points)
ECON202 Microeconomics and Business Economics (20 points)

Note(s): STAT221 is recommended as a 200 level paper in the specialisation.

300 LEVEL COMPULSORY PAPERS
MATH311 Advanced Calculus (20 points)
Plus 40 points of MATH 300 level papers.
Plus at least 40 points from ECON 300 papers.

Note(s): In the 40 points of MATH 300 level papers, it is recommended that this include MATH331 Methods of Applied Mathematics.

500 LEVEL COMPULSORY PAPERS (HONOURS)
60 points of MATH 500 level papers.
Including MATH520 Report of an Investigation (45 points)
Plus at least 45 points from ECON 500 level papers.

Students intending to do further studies in Economics are recommended to do 60 points from ECON 500 level papers.
SPECIALISATIONS

BCMS(Hons) MAJOR IN MATHEMATICS WITH SPECIALISATION IN FINANCE

100 LEVEL COMPULSORY PAPERS
- MATH101 Introduction to Calculus (15 points)
- MATH102 Introduction to Algebra (15 points)
- STAT121 Introduction to Statistical Methods (15 points) or STAT111 Statistics for Science (15 points)
- COMP103 Introduction to Computer Science 1 (15 points)
- COMP104 Introduction to Computer Science 2 (15 points)

Recommended:
- ECON100 Business Economics and the New Zealand Economy (15 points)

200 LEVEL COMPULSORY PAPERS
- MATH251 Multivariable Calculus (10 points)
- MATH252 Elements of Analysis (10 points)
- MATH253 Linear Algebra (10 points)
- MATH255 Differential Equations (10 points)

Plus 20 points of MATH 200 level papers.
- FINA201 Finance

Note(s): STAT221 is recommended as a 200 level paper in the specialisation.

300 LEVEL COMPULSORY PAPERS
- MATH311 Advanced Calculus (20 points)
- Plus 40 points of MATH 300 level papers.
- FINA311 Corporate Finance
- FINA312 Portfolios and Markets

Note(s): In the 40 points of MATH 300 level papers, it is recommended that this include MATH331 Methods of Applied Mathematics.

500 LEVEL COMPULSORY PAPERS (HONOURS)
- 60 points of MATH 500 level papers.
 - Including MATH520 Report of an Investigation (45 points)
 - Plus at least 45 points from FINA 500 level papers.

Students intending to do further studies in Finance are recommended to take 60 points from FINA 500 level papers.

Note on Assessment
Almost all undergraduate papers require internal assessment and a final examination. The two components contribute to the final assessment in the ratio stated or, if there is a choice of two ratios, in the ratio that is more favourable to the candidate. The requirement for an unrestricted pass is a minimum grade of C for the whole paper, normally a minimum grade of D for the internal assessment and a minimum grade of D for the final examination.

100 LEVEL PAPERS
Admission to the paper MATH101 Introduction to Calculus is open to students who have 16 credits from NCEA Mathematics standards chosen from AS90637, AS90647, AS91573, AS91574, AS91575, AS91577, AS91578, AS91579 and AS91587, including at least 11 credits from AS91577, AS91578 and AS91579, or at least a 'B-' in MATH102. Admission to the paper MATH102 Introduction to Algebra is open to students who have 16 credits from NCEA Mathematics standards chosen from AS90637, AS90647, AS91573, AS91574, AS91575, AS91577, AS91578, AS91579 and AS91587, or at least a 'B' in CAFS004 or with a pass in MATH165, MATH166, or MATH101. These are guaranteed entry requirements, but those without these requirements will be considered on a case-by-case basis.

Introduction to Calculus and **Introduction to Algebra** are each offered in both Semester A and Semester B. Both are essential for Mathematics majors, for students who might wish to have the option of going on to 200 level Mathematics papers, and for students who require a good mathematics foundation for their other university studies. Commencing in 2014, **Introduction to Calculus** will also be offered in Summer School (S Semester).

For students who do not meet the entry requirement for the two main papers, there are two closely related introductory mathematics papers: MATH165 General Mathematics and MATH166 Management Mathematics. A sufficient entry requirement for both is 18 credits at NCEA Level 2 Mathematics. Again, those not meeting these requirements will be considered on a case-by-case basis. These two papers are offered in both Semester A and Semester B. They provide a broad introduction to algebra and calculus, and a pass in either enables progression into one or both of the two main 100 level papers.

Students admitted to a Bachelor of Engineering degree (BE(Hons)) must take **Introduction to Calculus and Introduction to Algebra**.

The paper MATH168 Preparatory Mathematics is targeted at students who do not meet the requirements for General Mathematics or Management Mathematics. This is a good paper for either a second chance or a mature returning student, or a person who wishes to embark on a new direction at university. A pass in Preparatory Mathematics enables entry to General Mathematics or Management Mathematics.
MATHEMATICS PAPERS – 100 LEVEL

MATH101-14A (HAM) & 14B (HAM) & 14S (HAM) Introduction to Calculus

15 points
This paper is fundamental to the study of mathematics at university, whether you wish to advance in mathematics or use the theories and techniques in the study of other subjects.

Paper Content
- Functions, limits and continuity, the derivative and its geometric meaning, rules for differentiation, the chain rule and higher derivatives, the mean value theorem, and Taylor series. Applications of the derivative including curve sketching, maxima and minima, related rates. The integral as an area, fundamental theorem of calculus, techniques of integration, including substitution and integration by parts. Applications of the integral including the calculation of volumes. The logarithm, exponential and hyperbolic functions, inverse functions. Elementary differential equations and their applications.

Assessment
- Internal assessment/Final examination ratio 1:1.

Contact Hours
- Three lectures and one small group tutorial each week.

Note(s):
- Entry to this paper is guaranteed for those students with 16 credits from NCEA Mathematics standards chosen from AS90637, AS90647, AS91573, AS91574, AS91575, AS91577, AS91578, AS91579 and AS91587, including at least 11 credits from AS91577, AS91578 and AS91579, or at least a ‘B’ in MATH102. Those not meeting any of these criteria will be considered on a case-by-case basis.

MATH102-14A (HAM) & 14B (HAM) Introduction to Algebra

15 points
This paper gives an introduction to the algebra needed in all areas of mathematics and subjects which use mathematical methods.

Paper Content
- Vector algebra with three-dimensional geometry; complex numbers – basic operations, polar representation and de Moivre’s theorem; systems of linear equations; matrix operations, inverses, and determinants; elementary number theory including the Euclidean algorithm; induction and recursion.

Assessment
- Internal assessment/Final examination ratio 1:1.

Contact Hours
- Three lectures and one small group tutorial each week.

Note(s):
- Entry to this paper is guaranteed for those students with 16 credits from NCEA Mathematics standards chosen from AS90637, AS90647, AS91573, AS91574, AS91575, AS91577, AS91578, AS91579 and AS91587, or at least a ‘B’ in CAFS004 or with a pass in MATH165, MATH166, or MATH101. Those not meeting any of these criteria will be considered on a case-by-case basis.
MATHEMATICS PAPERS – 100 LEVEL

Equivalent Paper(s) MATH165.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures and one small group tutorial each week.

Note(s): Entry to this paper is guaranteed for those students with 18 credits of NCEA Level 2 Mathematics. Others without this criterion may be advised to take MATH168 Preparatory Mathematics before attempting MATH166.

MATH168-14A (HAM) & 14B (HAM) Preparatory Mathematics

15 points

This is an intensive catch-up paper in basic algebraic concepts, with a brief introduction to statistics and calculus. It is intended for those who wish to improve their basic mathematical skills. It provides the general mathematical background needed for many other subjects, and also for the mathematics and statistics papers MATH165 General Mathematics, MATH166 Management Mathematics, STAT121 Introduction to Statistical Methods or STAT160 Management Statistics. If you are using MATH168 as preparation for any mathematics or statistics paper, you should aim for a B grade or better.

Enrolment in this paper requires the permission of the Chairperson of Mathematics. This will normally be given only if you do not meet any of the entry requirements for the other 100 level Mathematics papers.

Restricted Paper(s) This paper may not be taken with, or after a pass in, any 100 level Mathematics or Statistics paper.

Note(s): This paper may not be counted towards the required number of science papers for the BSc or BSc(Tech) or towards the required number of papers for a supporting subject in mathematics.

MATHEMATICS PAPERS – 200 LEVEL

200 LEVEL PAPERS

Mathematics majors should include the papers MATH251 Multivariable Calculus, MATH252 Elements of Analysis, MATH253 Linear Algebra, MATH255 Differential Equations, plus other 200 level mathematics papers to the value of 20 points. (COMP235 Logic and Computation may be counted for this purpose.)

Those concentrating on applied mathematics should include the papers MATH257 Computational Mathematics and MATH259 Mathematical Modelling while students interested in pure mathematics should consider taking COMP235 Logic and Computation, or at least MATH258 Introduction to Discrete Mathematics.

For Science students, the papers MATH251 Multivariable Calculus and MATH255 Differential Equations are appropriate, while students taking papers in physics or electronic engineering are encouraged to include also the paper MATH253 Linear Algebra.

Students in computer science should consider the paper MATH253 Linear Algebra. The most appropriate papers for students in economics, finance, and management systems are MATH251 Multivariable Calculus and MATH253 Linear Algebra.

COMP235-14B (HAM) Logic and Computation

20 points

This paper introduces computer science and mathematics students to the formal theory of computation, as well as some important ideas in discrete mathematics of relevance to computer science and IT.

In the discrete mathematics half of the paper, a formal approach to logic is introduced: the basic connectives, well-formed formulas, truth tables, laws of equivalence, testing validity of logical arguments, plus an introduction to predicates and quantifiers. Also covered are modular arithmetic and its applications (to coding and cryptography for example) as well as an introduction to binary relations and directed graphs (connectivity and Warshall’s algorithm).

The other half of the paper deals with the theory of computation. Topics include: finite state automata and regular languages, Kleene’s theorem, Turing machines and the Halting problem, formal grammars and the Chomsky hierarchy. There is laboratory work in which students design Turing Machines.

Prerequisite Paper(s) MATH102.

Restricted Paper(s) MATH258.

Assessment Internal assessment/Final examination ratio 1:1.
MATH251-14A (HAM) Multivariable Calculus

10 points
This paper continues the technical development of calculus begun in MATH101 Introduction to Calculus, extending it to functions of several real variables.

Paper Content
- Differentiation of functions of n variables and vector functions; applications including linearisation and optimisation;
- integration in n-dimensions; applications including curve length, surface areas and volumes.
- Further topics will be selected from: centre of mass co-ordinates and moments of inertia; the gradient, divergence and curl operators; curvilinear co-ordinate systems; the integral theorems of Green, Gauss and Stokes; Taylor’s Theorem in n-dimensions.

Prerequisite Paper(s)
ECON204 or both MATH101 and MATH102.

Restricted Paper(s)
ENGG285.

Assessment
- Internal assessment/Final examination ratio 1:1.

Contact Hours
- Two lectures and a tutorial each week.

MATH252-14B (HAM) Elements of Analysis

10 points
This paper is an essential introduction to the theory and methods of real analysis. Topics in the first half are the absolute value, least upper bound and greatest lower bound, monotone sequences, convergence of sequences, sums, products and quotients of limits, tests for convergence of series, limits of real functions, and the intermediate value theorem.

For the second half, topics are the boundedness of continuous functions, differentiation, Rolle’s, Mean Value and Taylor’s theorems, optimisation, and power series for elementary functions. Additional topics may include an introduction to the Riemann integral, Landau’s “O,o” notations, and the implicit function theorem.

Prerequisite Paper(s)
MATH101 and MATH102.

Assessment
- Internal assessment/Final examination ratio 1:1.

Contact Hours
- Two lectures and a tutorial each week.

MATH253-14A (HAM) Linear Algebra

10 points
This paper deals with the complete theory of linear relationships between quantities, unlike calculus which examines more complicated relationships. It is particularly useful if you are majoring in computer science, statistics, operations research, chemistry or physics. The aim is to develop the fundamental ideas and techniques of linear algebra. The paper develops the basic themes of linear algebra introduced in MATH102 Introduction to Algebra. Topics will be selected from the following: the basis and dimension of a vector space, the geometric effect of a matrix transformation, the determinant, subspaces of vector spaces, linear independence, change of basis, range and kernel, eigenvectors and eigenvalues, diagonalisation of matrices, the inner product, orthonormal bases, the Gram-Schmidt process, orthogonal diagonalisation of symmetric matrices, the complex inner product, unitary, Hermitian and normal matrices and their diagonalisation properties.

Prerequisite Paper(s)
MATH102 or ECON204.

Restricted Paper(s)
ENGG283.

Assessment
- Internal assessment/Final examination ratio 1:1.

Contact Hours
- Two lectures and a tutorial each week.

MATH255-14B (HAM) Differential Equations

10 points
This paper deals with ordinary and partial differential equations in both theory and practice. Such equations arise in a diverse range of areas including biology, economics and physics. It begins with first-order equations and then discusses higher-order equations and systems of equations. Phase-plane diagrams and geometrical methods are introduced. Problems involving partial differential equations (wave equation, heat diffusion equation, Laplace’s equation) are solved via separation of variables and Fourier series techniques.

Prerequisite Paper(s)
MATH101 and MATH102.

Restricted Paper(s)
ENGG284.

Assessment
- Internal assessment/Final examination ratio 1:1.

Contact Hours
- Two lectures and a tutorial each week.

MATHEMATICS PAPERS – 200 LEVEL
MATH257-14A (HAM) Computational Mathematics

10 points
Numerical methods for mathematicians, engineers, scientists, computer scientists and economists.

Paper Content

Prerequisite Paper(s) MATH101 and MATH102.
Assessment Internal assessment/Final examination ratio 1:1.
Contact Hours Two lectures and a tutorial each week.

Note(s): Experience with programming (such as COMP103) is recommended.

MATH258-14B (HAM) Introduction to Discrete Mathematics

10 points
Introduction to discrete mathematics and its applications. Topics include: propositional logic, binary relations, directed graphs and modular arithmetic with applications to cryptography.

Prerequisite Paper(s) MATH102.
Restricted Paper(s) COMP140, COMP235.
Assessment Internal assessment/Final examination ratio 1:1.
Contact Hours Two lectures per week, including some tutorial time.

MATH259-14B (HAM) Mathematical Modelling

10 points
An introduction to the uses of applied mathematics in science and engineering, with a focus on how differential equations are used to formulate mathematical models and obtain concrete results. The syllabus includes: solution techniques for first and second-order differential equations, equilibrium solutions and linearised stability analysis, phase-plane methods and qualitative solutions, dimensional analysis and scaling. Examples are drawn from mechanical and electrical vibrations, chemical reactions, population dynamics, and finance.

Prerequisite Paper(s) MATH101. MATH102 is recommended.
Assessment Internal assessment/Final examination ratio 1:1.
Contact Hours Two lectures and a tutorial each week.

MATH310-14B (HAM) Modern Algebra

20 points
This paper is a first course in abstract algebra. It begins with the notion of a group, a structure appearing in geometry, physics and number theory, and indeed anywhere symmetry is important. Basic concepts such as normal subgroups, factor groups and homomorphisms are studied, and powerful counting techniques are presented.

The work on groups leads naturally into the study of rings and fields, which are generalised number systems. The theory of ideals and factor rings is developed mainly for commutative rings. Possible application areas include: impossibility of geometric constructions, counting methods based on generating functions, and construction of Latin squares.

An important objective of this paper is learning how to construct proofs.

Prerequisite Paper(s) One of MATH253 or COMP235 or MATH258.
Assessment Internal assessment/Final examination ratio 1:1 or 0:1, whichever works in your favour.
Contact Hours Four hours per week, including some tutorial time.
MATH311-14A Advanced Calculus

20 points
This paper is essential for all majors in mathematics. Topics for real calculus: line, surface and volume integrals, vector calculus (div, grad, curl), the integral theorems of Gauss and Stokes, improper integrals, Gamma and Beta functions, and Fourier series. Topics for complex calculus: the complex plane, holomorphic functions, the Cauchy-Riemann equations, Cauchy’s integral theorems, the fundamental theorem of algebra, singularities, power and Laurent series, the residue theorem, and contour integration.

Prerequisite Paper(s) MATH251 or ENGG285 and MATH253 or ENGG283.
Recommended Paper MATH252.
Assessment Internal assessment/Final examination ratio 1:1 or 0:1, whichever works in your favour.
Contact Hours Three lectures and one tutorial each week.

MATH312-14B (HAM) Discrete Mathematics and Number Theory

20 points
The discrete mathematics half of this paper is concerned with graph theory. Graphs can be used to model the synapses between neurons, transportation networks, and many other phenomena. Well-known problems include the four-colour theorem, recently proved with the aid of a computer. Topics covered in the paper include admissible degree sequences, connectivity, Eulerian graphs, Hamiltonian graphs, planarity, graph colourings and graph decompositions.

The other half of the paper concerns number theory. The oldest subject in mathematics, number theory is now as relevant as ever because it provides the basis of cryptography and computer security. Famous problems include Fermat’s Last Theorem, the Riemann Hypothesis and the Goldbach Conjecture. Topics covered in the paper include such gems as the distribution of primes, Gauss’s theory of quadratic equations modulo p, and the mysteries of the zeta-function.

Prerequisite Paper(s) MATH258 or COMP235.
Restricted Paper(s) MATH319.
Assessment Internal assessment/Final examination ratio 1:1 or 0:1, whichever works in your favour.

MATH329-14A (HAM) Topics in Applied Mathematics

20 points
This paper provides an introduction to more advanced topics in applied mathematics, especially as it applies to physical problems, to supplement the methods-oriented approach of MATH331. It will also provide background for more advanced work at graduate level in areas such as fluid mechanics, classical and quantum mechanics, and relativity. Students will acquire an understanding of several topics in applied mathematics and its uses in modelling the physical world.

Corequisite Paper(s) MATH311. MATH331 is recommended.
Prerequisite Paper(s) MATH251 and MATH253.
Assessment Internal assessment/Final examination ratio 1:1 or 0:1, whichever works in your favour.
Contact Hours Three lectures and one tutorial each week.

MATH331-14B (HAM) Methods of Applied Mathematics

20 points
This paper introduces the three most widely used methods for solving partial differential equations – separation of variables, integral transforms, and complex variable methods. The syllabus includes: introduction to continuum mechanics, Sturm-Liouville theory and eigenfunction expansions; Bessel functions and Legendre polynomials; Green’s functions for ordinary and partial differential equations; Laplace’s equation, the wave equation, the diffusion equation, Laplace and Fourier transforms, application to ordinary and partial differential equations; complex variable methods, including conformal transformations, the Bromwich contour, and the method of characteristics. The choice of topics may vary from year to year.

Prerequisite Paper(s) MATH251, MATH253 and MATH255.
Restricted Paper(s) ENGG383.
Assessment Internal assessment/Final examination ratio 1:1 or 0:1, whichever works in your favour.
Contact Hours Three lectures and one tutorial each week.
MATHEMATICS PAPERS – 300 LEVEL

MATH334-14A (HAM) Classical and Quantum Mechanics
20 points
One half of this paper deals with the theory of classical mechanics from a variational point of view including the central force problem, rigid body kinematics, Hamilton’s equations of motion, canonical transformations, Hamilton-Jacobi theory and the Lagrange formulation for continuous systems and fields. The other half deals with the fundamentals of quantum mechanics and quantisation for elementary systems including: vector representations of states, spin, observables having continuous spectra time variation of states, angular momentum, perturbation methods, Dirac’s relativistic equation for the electron.

Corequisite Paper(s) MATH311.
Restricted Paper(s) MATH434/534.
Assessment Internal assessment/Final examination ratio 1:1 or 0:1 whichever works in your favour.
Contact Hours At least four hours each week.
Note(s): Admission to this paper is with the permission of the Chairperson.

MATHEMATICS PAPERS – 500 LEVEL

500 LEVEL PAPERS
If you intend to take these papers you must consult one of the Graduate Advisers of the Department of Mathematics. Not all 500 level papers are offered each year, but those with detailed listings in this Handbook will be offered in 2014. (No 400 Level papers will be offered.)

MATH501-14A (HAM) Metric Spaces
15 points
Axioms of a metric space, open and closed sets, cluster points etc. Completeness, continuity, connectedness and compactness in metric spaces (including sequential compactness, Heine-Borel, and Bolzano-Weierstrass property). Construction of Cantor sets. Contraction mapping and Baire Category Theorems and applications. Further topics may include Banach spaces and applications to dynamical systems.

Prerequisite Paper(s) MATH311.
Assessment Internal assessment/Final examination ratio 1:0.
Contact Hours Up to three contact hours per week.

MATH511-14B (HAM) Semigroups and Universal Algebra
15 points
Extends work on groups and rings by considering general algebraic systems in which a set is equipped with one or more operations. Introduces semigroups, lattices, and Zorn’s Lemma.

Prerequisite Paper(s) MATH310.
Assessment Internal assessment/Final examination ratio 1:0.
Contact Hours Up to three contact hours per week.

MATH513-14B (HAM) Finite Groups
15 points
A continuation of the group theory begun in MATH310. Topics include Sylow’s Theorem and applications, composition series, Jordan-Holder Theorem, normal series, central series, chief series, nilpotent and solvable groups, and an introduction to representation and character theory.

Prerequisite Paper(s) MATH310.
Assessment Internal assessment/Final examination ratio 1:0.
Contact Hours Up to three contact hours per week.
MATH516-14A (HAM) Topics in Discrete Mathematics
15 points
An introduction to graph theory and combinatorics, including network optimisation algorithms.
Prerequisite Paper(s) MATH320.
Assessment Internal assessment/Final examination ratio 1:0.

MATH520-14Y (HAM) Report of an Investigation
45 points
A directed investigation and report on an approved project or study topic.
Prerequisite Paper(s) Students must qualify for entry according to the criteria determined by the Dean.
Assessment Internal assessment/Final examination ratio 1:0.

Note(s): This paper is available only to students undertaking a BCMS(Hons) degree programme by permission of the Dean.

MATH541-14A (HAM) Classical Partial Differential Equations
15 points
Topics chosen from: first-order equations; the method of characteristics; second-order equations; wave, diffusion, and potential; separation of variables, initial and boundary value problems; applications; heat and mass transfer, fluid dynamics, finance.
Prerequisite Paper(s) MATH311 and MATH331.
Assessment Internal assessment/Final examination ratio 1:0.
Contact Hours At least two contact hours per week.

MATH543-14B (HAM) Nonlinear Dynamics and Chaos
15 points
This paper introduces the students to nonlinear dynamics and chaos through analytical methods, examples and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by two-dimensional systems of first-order differential equations and their phase plane analysis, limit cycles and their bifurcations, culminating with the Lorenz equations—a three-dimensional system with chaotic behaviour and strange attractors. Iterated maps are used to illustrate chaos and fractals.
Prerequisite Paper(s) MATH311 and (MATH255 or MATH259).
Assessment Internal assessment/Final examination ratio 1:0.

MATH553-14A (HAM) Fluid Dynamics
15 points
Basic principles of fluid dynamics. A review of thermodynamics and hydrostatic equilibrium. Derivation of the continuity, momentum, and energy equations, Navier-Stokes equations. Ideal and viscous flows, effects of compressibility. Selected applications of these principles to topics including surface water waves, boundary layers, shocks and jets, instabilities and convection, turbulence, the solar wind, and the dynamics of Earth’s atmosphere.
Prerequisite Paper(s) MATH331 and MATH329.
Restricted Paper(s) MATH446/536.
Assessment Internal assessment/Final examination ratio 1:0.
Contact Hours At least two contact hours per week.

MATH554-14B (HAM) Astrophysical Fluids
15 points
Derivation of the equations for electrically conducting fluids (magnetohydrodynamics) and their application in astrophysics.
Applications to be selected from: magnetic reconnection and solar flares, solar physics, accretion discs, magnetic dynamo theory, solar wind fluctuations, and others.
Prerequisite Paper(s) MATH331 and MATH329.
Restricted Paper(s) MATH446/536.
Assessment Internal assessment/Final examination ratio 1:0.
Contact Hours At least two contact hours per week.

MATH555-14A (HAM) Advanced Classical Mechanics
15 points
Classical mechanics from a variational point of view including the central force problem, rigid body kinematics, Hamilton’s equations of motion, canonical transformations, Hamilton–Jacobi theory and the Lagrange formulation for continuous stems and fields.
Prerequisite Paper(s) MATH311.
Restricted Paper(s) MATH334.
Assessment Internal assessment/Final examination ratio 1:0.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH556-14A</td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td></td>
<td>15 points</td>
</tr>
<tr>
<td></td>
<td>The fundamentals of quantum mechanics and quantisation for elementary systems including: vector representations of states, spin, observables having continuous spectra, time variation of states, angular momentum, perturbation methods, Dirac’s relativistic equation for the electron.</td>
</tr>
<tr>
<td></td>
<td>Prerequisite Paper(s) MATH311.</td>
</tr>
<tr>
<td></td>
<td>Restricted Paper(s) MATH334.</td>
</tr>
<tr>
<td></td>
<td>Assessment Internal assessment/Final examination ratio 1:0.</td>
</tr>
<tr>
<td>MATH581-14A</td>
<td>Special Topic in Mathematics 1</td>
</tr>
<tr>
<td></td>
<td>15 points</td>
</tr>
<tr>
<td>MATH581-14B</td>
<td>Special Topic in Mathematics 1</td>
</tr>
<tr>
<td></td>
<td>15 points</td>
</tr>
<tr>
<td>MATH582-14A</td>
<td>Special Topic in Mathematics 2</td>
</tr>
<tr>
<td></td>
<td>15 points</td>
</tr>
<tr>
<td>MATH582-14B</td>
<td>Special Topic in Mathematics 2</td>
</tr>
<tr>
<td></td>
<td>15 points</td>
</tr>
<tr>
<td>MATH591-14C</td>
<td>Dissertation</td>
</tr>
<tr>
<td></td>
<td>30 points</td>
</tr>
<tr>
<td>MATH592-14C</td>
<td>Dissertation</td>
</tr>
<tr>
<td></td>
<td>60 points</td>
</tr>
<tr>
<td>MATH593-14C</td>
<td>Mathematics Thesis</td>
</tr>
<tr>
<td></td>
<td>90 points</td>
</tr>
<tr>
<td>MATH594-14C</td>
<td>Mathematics Thesis</td>
</tr>
<tr>
<td></td>
<td>120 points</td>
</tr>
<tr>
<td>MATH319</td>
<td>Topics in Pure Mathematics</td>
</tr>
<tr>
<td>MATH333</td>
<td>Classical Field Theory</td>
</tr>
<tr>
<td>MATH342</td>
<td>Numerical Mathematics</td>
</tr>
<tr>
<td>MATH505</td>
<td>Topics in Analysis and Topology</td>
</tr>
<tr>
<td>MATH506</td>
<td>Combinatorics</td>
</tr>
<tr>
<td>MATH509</td>
<td>Number Theory</td>
</tr>
<tr>
<td>MATH512</td>
<td>Continuous Groups</td>
</tr>
<tr>
<td>MATH515</td>
<td>Analytic Number Theory</td>
</tr>
<tr>
<td>MATH518</td>
<td>Rings and Modules</td>
</tr>
<tr>
<td>MATH542</td>
<td>Partial Differential Equations 2</td>
</tr>
<tr>
<td>MATH564</td>
<td>Special Relativity</td>
</tr>
<tr>
<td>MATH565</td>
<td>General Relativity</td>
</tr>
</tbody>
</table>
MATHEMATICS GRADUATE STUDY – INTRODUCTION

Mathematics today has a multitude of applications: car, aircraft, and ship design, cryptography, error-correcting codes, climate modelling and weather forecasting, improving the efficiency of industrial processes, power scheduling and energy modelling, financial and market prediction, and astrophysics, to name just a few. But mathematics also has interest for its own sake, because of the depth and beauty of the problems. High-profile pure mathematics problems solved in recent years include the Four Colour Problem, Fermat’s Last Theorem, and the Poincaré Conjecture.

Staff in the Department of Mathematics at the University of Waikato carry out research on a wide variety of topics in pure and applied mathematics, work that calls on mathematical knowledge from many fields such as algebra, analysis, number theory, differential equations and numerical analysis. A typical graduate programme includes papers from several of these areas.

These pages give information about the people who teach and supervise graduate work. Programmes may involve one, two or three years of study beyond a first degree. We welcome both New Zealand and international students. We have a friendly active group of experienced researchers in pure, applied and computational mathematics. Students can expect frequent informal contact with staff (often in the tearoom).

The Department provides good computing facilities. Our senior laboratory has a network of computers running Linux and Windows 7. Software includes: Maple, Mathematica, Matlab, Fortran 90, and Java. Internet services are provided.

You can find out more about the Mathematics Department on our website: www.math.waikato.ac.nz

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

The list below indicates general areas in which staff would be willing to supervise graduate projects and theses. The list is not exhaustive and most staff would consider other topics not listed here, which they would happily discuss with you. They will of course be receptive to your own ideas for projects.

For a PhD or MPhil, which involve original research, supervisors will only consider topics closely related to their own research. Otherwise there is a risk of repeating work already published, or which is of little interest. The other graduate degrees allow greater flexibility, and a review of published work on a mathematical topic in which you are particularly interested can often be a suitable project. Other projects may also be possible provided a suitable supervisor can be arranged. In some cases, this might involve a team which includes staff outside of the Department of Mathematics. For details consult the Graduate Advisers.

GRADUATE ADVISERS

YURI LITVINENKO AND DANIEL DELBOURGO

Department of Mathematics
The University of Waikato
Private Bag 3105
Hamilton 3240
New Zealand

Phone: +64 7 838 4713
Fax: +64 7 838 4666
Email: gradinfo@math.waikato.ac.nz
Web: www.math.waikato.ac.nz
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

PROFESSOR KEVIN BROUGHAH

ELEMENTARY NUMBER THEORY

The proof of Fermat’s Last Theorem, together with a growing need for encryption within e-commerce, has rekindled interest in the techniques and outstanding problems of number theory. For example, smart cards sometimes include elliptic curve encryption algorithms. The use of the computer has also improved our ability to test conjectures and devise hypotheses based on real numerical data. In this project a problem from prime, algebraic or applied number theory will be considered: reading the background history and theories, looking at related results, carrying out computer experiments, testing some plausible conjectures etc will all lead up to the main goal – an attack on the outstanding problem or application itself.

SIEVE THEORY

The twin primes conjecture has long been regarded as a suitable problem which could be resolved using sieve theory, but so far the approach has failed. There are problems which have been solved. This project includes a study of the work of Henri and sieve and might include an extension of his recent theorem

\[p = x^2 + y^4 \] for an infinite number of primes \(p \).

ZETA FUNCTIONS

Modern analytic number theory includes the study and application of zeta and L-functions in a variety of settings, including number fields, groups and graphs. This is an active area of research and the aim of the project is to bring the student to a level (through a study of the works of Peter Sarnak, Dorian Goldfeld and others) where one of the many unsolved problems might be attacked. The Waikato work has a strong computational flavour.

SAMPLE PUBLICATIONS

Broughan, Kevin A., De Koninck, J.M., Katai, I. and Luca, Florian (2012) On Integers for Which the Sum of Divisors is the Square of the Squarefree Core *Journal of Integer Sequences* 15, Article 12.7.5.

Broughan, Kevin A. and Zhou, Qizhi (2010) “Divisibility by 3 of Even Multiple Perfect Numbers of Abundancy 3 and 4” *Journal of Integer Sequences* 13, Article 10.1.5.

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

DR NICK CAVENAGH

COMBINATORICS

My research interests are chiefly in combinatorics, which is a branch of discrete mathematics, which in turn is a branch of pure mathematics.

Within combinatorics, I do a lot of work on latin squares, latin trades or bitrades and graph decompositions. Latin trades connect with many branches of pure mathematics including geometry (eg partitioning an integer-sided triangle into smaller, integer-sided triangles), finite field theory (in particular Weil’s theorem has been useful), group theory (some latin trades may be defined in terms of a group with specified properties) and linear algebra.

A latin square of order \(n \) is an \(n \times n \) array of symbols 1,2,....,\(n \) such that each symbol occurs exactly once in each row and once in each column. Note that a completed Sudoku puzzle is a type of latin square of order 9. Problems in combinatorics are often easy to state but sometimes hard to solve. Those with an aptitude and disposition for finding patterns and solving puzzles often enjoy research in combinatorics.

SAMPLE PUBLICATIONS

Smith, Benjamin R. and Cavenagh, Nicholas (2012) “Decomposing complete equipartite graphs into odd square-length cycles: Number of parts even” *Discrete Mathematics* 312, 1611-1622.

Billington, Elizabeth J. and Cavenagh, Nicholas J. (2011) “Decomposing complete tripartite graphs into 5-cycles when the partite sets have similar size” *Aequationes Mathematicae* 82, 277-289.

Cavenagh, Nicholas J. and Smith, B.R. (2011) “Decomposing complete equipartite graphs into short even cycles” *Journal of Combinatorial Designs* 19, 131-143.

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

PROFESSOR IAN CRAIG

ASTROPHYSICS
The containment of hot plasmas by strong cosmic fields is not well understood. Research topics include the structure and stability of magnetic fields in the solar corona.

MAGNETIC FIELD LINE RECONNECTION
A problem of great interest in astrophysics is magnetic reconnection. The central idea is to release magnetic energy bound up in the topology of solar and stellar plasmas. Although it is known that reconnection is the only mechanism which allows topological change in the magnetised plasma, the real challenge for astrophysicists is to demonstrate a mechanism that can explain the explosive release of a solar or stellar flare.

SAMPLE PUBLICATIONS

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

DR DANIEL DELBOURGO

Number theory is as relevant today as it was 2,500 years ago, with the advent of high-powered computing and cryptography. My research interests lie in the area of arithmetic geometry, which uses tools from geometry and cohomology to study rational solutions to equations. As a famous example, Fermat’s Last Theorem asserted that there are no (non-trivial) integer solutions to the equation $x^n + y^n = z^n$ when $n > 2$, yet its eventual proof by Andrew Wiles was found only after a mere 350 years of concentrated effort by numerous great mathematicians! Elliptic curves are equations of the form $y^2 = x^3 + Ax + B$, and they are tremendously important in both arithmetic and cryptography. In order to understand them better it’s first necessary to study their L-functions, which encode data on the number of points on the curve modulo p at all primes p simultaneously. By a series of deep results, these L-functions are then connected to complex objects called modular forms, which exist as differentials on quotients of the upper half plane.

My work in this area applies ideas from classical Iwasawa theory and Galois representations, to study the arithmetic behaviour of invariants arising from these objects. I’m also interested in the special values of these L-functions, and there is a rich vein of conjectures connecting these values with elements in K-groups. Some of my recent efforts involve extending what we know over abelian extensions of the rationals, to some brand new non-abelian examples.

SAMPLE PUBLICATIONS

136 COMPUTING & MATHEMATICAL SCIENCES
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

DR IAN HAWTHORN

GENERALISED SYLOW THEOREMS

Sylow’s theorem is one of the most useful tools in a group theorist’s toolkit. It has now been generalised in a multitude of ways. The problem today is one of classifying the different generalisations and seeking a better understanding of the underlying principles that give rise to various categories of generalised Sylow theorems.

SOLVABLE GROUP THEORY

The composition series structure within a solvable group equips the group with a kind of a ‘scaffold’. This allows us to employ inductive arguments. Hence solvable group theory has quite a distinct flavour from the more difficult theory of finite groups in general. I have particular interest in the area of Fitting classes of solvable groups where there are a number of unsolved problems of current interest.

OTHER TOPICS

I also have interests in group theory in general. In particular I am interested in symmetry groups, Coxeter groups and Lie groups of relevance to theoretical physics. Research projects at a less advanced level are possible in these areas.

SAMPLE PUBLICATIONS

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

ASSOCIATE PROFESSOR STEPHEN JOE

LATTICE RULES

Lattice rules are used for the numerical integration of multiple integrals in hundreds or even thousands of variables. There has been much recent work on lattice rules and one of the main results is that the generating vectors for these lattice rules may be constructed by using a component-by-component algorithm. There is now a need to do numerical testing of these lattice rules to see how they perform. Besides standard test problems, these lattice rules could be tested out on integrals arising from practical situations such as those from financial models.

Lattice rules are usually constructed for integrands over the unit cube. However, there are some applications in which one wants to approximate integrals where the integration region is all of Euclidean space. A question that arises is whether to use lattice rules for the unit cube and then do some mapping to Euclidean space or whether to use lattice rules designed for Euclidean space in the first place.

Of course, there are many other unanswered questions on lattice rules (such as those to do with their structure) and these are worthy of exploration as well.

SAMPLE PUBLICATIONS

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

PROFESSOR ERNIE KALNINS

PERTURBATIONS AND STABILITY IN GENERAL RELATIVITY

I am interested in the theory of perturbations in the vicinity of compact astrophysical objects such as black holes, and the stability of such structures with respect to such perturbations. In addition to these studies the solution of Einstein’s equations for bounded rotating masses is being actively pursued. In particular, the gravitational field in the vicinity of such configurations both classically and relativistically is under study. Affiliated to these ideas is the study of atoms in high magnetic fields and the relation to quantum chaos. These are important quantum mechanical problems to be solved here in an astrophysical sense.

QUANTUM GROUPS AND SPECIAL FUNCTIONS

Another interest is the study of quantum groups and quadratic algebras. This study is of actual quantum mechanical and classical mechanical systems which admit explicit solution and have definite algebraic properties. Also associated with this study are the properties of the special functions that arise in the solution of these problems and the consequences for the corresponding algebra. Of particular interest are generalisations of ellipsoidal harmonics in the case of quantum algebras.

SAMPLE PUBLICATIONS

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

DR WOEI CHET LIM

INHOMOGENEOUS COSMOLOGICAL MODELS

I am interested in the evolution of inhomogeneous cosmological models according to general relativity. The goal is to build an inhomogeneous model of the universe consistent with observational data, and to find any new relativistic phenomena.

I am currently studying the spike solution (in vacuum, with matter, or with an electromagnetic field), and the void model. The vacuum spike solution describes recurring inhomogeneous sheet-like gravitational distortions that occur during the chaotic BKL (Belinski-Khalatnikov-Lifshitz) phase shortly after the Big Bang; the void model describes the evolution of a relatively empty vast space. Sheets or bubbles of spikes are conjectured to intersect and interact with each other in filaments and points, and cause matter to gravitate towards these sheets, filaments and points to form large scale structures, leaving behind relatively empty regions that become voids. The inhomogeneous paradigm conjectures that the accelerated cosmic expansion, presently attributed to hypothetical dark energy in the homogeneous standard model, is an apparent effect of averaging the different expansion rates of the voids and the large scale structures. The Einstein field equations of general relativity are a set of hyperbolic partial differential equations. I generally solve them numerically using finite difference methods. In special cases such as the spikes, I find the exact solution using solution-generating transformations. I also use analytical approximations and qualitative dynamical systems methods to study the evolution of the models.

SAMPLE PUBLICATIONS

I am interested in developing theoretical models for a wide range of astrophysical processes – from energy release in flares on the Sun to the acceleration of galactic cosmic rays. The work is motivated by observations that put strong constraints on the theories, so developing models and making quantitative predictions is usually an interesting but challenging job.

SAMPLE PUBLICATIONS

My current research interests centre on understanding the behaviour of turbulent flows. Physically we all have a good understanding of what a turbulent flow is. For example, white water rapids are clearly turbulent, whereas a (stationary) jar of honey is not. In fact, on the earth most flows, at most times, are turbulent. Mathematically, one might say that a turbulent flow is characterised by motions which occur over a broad range of length (and time) scales and that these motions interact nonlinearly. It is this nonlinear nature of the problem that makes it simultaneously so rich and so challenging.

A particular interest is magnetofluid turbulence, where the fluid is electrically conducting so that one must consider not just the behaviour of the fluid’s velocity, but also that of its magnetic field. Examples of magnetofluids include liquid metals (e.g. mercury) and plasmas (e.g. the sun, the solar wind, the working fluid in nuclear fusion devices). Most of the matter in the universe is thought to be in the plasma state, that is, the atoms have been ionised. One way to study conducting fluids is using magnetohydrodynamics (MHD). This is the marriage of the equations of fluid dynamics with those of electrodynamics, and provides a good approximation to the behaviour of various parts of the solar system (or heliosphere). Important dynamical features of MHD include waves, turbulence, plasma heating, and particle acceleration. The work involves a mixture of theory (including statistical mechanics and modelling) and computer simulations of the governing equations. I am happy to supervise PhD and masters topics on fluids and MHD, particularly solar wind/solar corona/turbulence.

SAMPLE PUBLICATIONS
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

DR TIMOTHY STOKES

ALGEBRA OF PARTIAL MAPS

An important topic in algebra is to abstractly represent certain concrete kinds of structure. For example, a well-known fact from group theory is that every group can be represented as a group of permutations of a set, and conversely, every collection of permutations closed under composition and inverse is a group. One of my main research interests is to generalise this correspondence to other situations. There are connections with the theory of relation algebras, of importance in Computer Science.

RADICAL THEORY

The Jacobson radical of ring theory is the key to unlocking much information about the structure of rings (algebraic objects generating the familiar number systems, which include polynomials and matrices as examples). I am interested in the generalisation of these ideas to other kinds of algebraic systems.

FREE SURFACE PROBLEMS

A very basic problem in the theory of ideal fluids is the behaviour of a free surface in response to the withdrawal of fluid through a submerged sink. The steady state case has received much attention in past decades, although recently a lot of work has been done in the unsteady case with the flow initiated from a quiescent situation. I am interested in this problem in two and three dimensions, for both finite and infinite depth situations.

SAMPLE PUBLICATIONS

GRADUATE THESES

THESES IN PROGRESS*

PHD STUDENTS

C. Armstrong Particle acceleration and transport in solar flares.

N. Lopez Magnetic energy release in the solar corona.

V. Raass Defining sets in full latin squares.

*Theses in progress at the time this document went to print, August 2013.

PHD THESES (SINCE 2001)

F. Ali Current sheet formation in uniformly twisted magnetic flux tubes.

D. Harder Geodesic geometry of some static axisymmetric vacuum spacetimes.

J. Heerikhuisen Coronal magnetic energy release by current sheet reconnection.

F. Kuo Constructive approaches to quasi-Monte Carlo methods for multiple integration.

M. Saad Electromagnetic stirring using a travelling magnetic wave.

T. Senanayake The influence of Hall currents, plasma viscosity, and electron inertia on magnetic reconnection solutions.

V. Sinescu Construction of lattice rules for multiple integration based on a weighted discrepancy.

G. Slezkova Geodesic geometry of black holes.

S. Somasundaram Almost weak Aplund spaces.

K. Spragg The effect of AC magnetic fields on liquid-metal free surfaces in industrial MHD.

Q. Zhou Multiply perfect numbers of low abundancy.

MASTERS THESES/DISSERTATIONS (SINCE 2001)

Y. Chang Varieties of algebras arising from partial order on sets and semigroups.

Y. Chau Magnetohydrodynamic driven flows in thin layers.

W. Crump Maxwell’s equations on a 10-dimensional manifold with local symmetry so (2,3).

M. Domijan Dynamical probing of mechanisms underlying calcium oscillations.

M. Kaufusi Infinity of prime numbers in an arithmetical progression.

Y. Lin The weighted L2 discrepancy for sobol sequences.

Y. Liu Brocard’s problem and variations.

I. MacDonald Edge-waves on beaches of arbitrary profile.

S. Pule The number of (0,1)-matrices with fixed row and column sum.

T. Senanayake Equilibrium solutions of the restricted three-body problem.

J. Theobald A survey of numerical methods for solving systems of nonlinear equations.

M. Ussher Investigating gravity and electromagnetism on a 10 dimensional manifold with local symmetry so (2,3).

Q. Zhou Two arithmetic functions and their applications.
STATISTICS – INTRODUCTION

WHAT IS STATISTICS

The word statistics conjures up images of tables of numbers or graphs. However, the subject statistics is much more than that – it is the science of collecting data and extracting information from that data. Statistical analysis is used to make informed decisions in most areas of human endeavour, such as agriculture, industry and commerce, law, medicine, forestry, psychology, insurance and economics. More than that, an understanding of statistics is essential to critical thinking: it is a skill that is useful in everyday life. Studying statistics makes you more aware of how data can be used and misused to persuade you to vote for a political party, to purchase consumer goods, to form opinions on social issues, and many other everyday decisions.

Statistics at Waikato can be studied by itself or in conjunction with other subjects from science and social science. If you take a major in statistics you have the opportunity of choosing support subjects: from computer science, mathematics, psychology, biology, earth science or many other areas, for statistical analysis is vital to the understanding of almost all facets of life. In particular, if you have an interest in economics, we offer the Economics specialisation in the BSc. When you study statistics you will become familiar with the use of powerful statistical software packages, which aid the collection and analysis of data. People with the skills from an education in statistics are highly sought after both in government and industry.

Smart organisations know that smart decisions come from using statistical methods.

STATISTICS CAREER OPPORTUNITIES

CAREER OPPORTUNITIES

Career prospects in Statistics are excellent, with opportunities in many areas:

» **Agriculture and horticulture**, where statisticians design and analyse experiments for important new scientific innovations which keep the New Zealand sector ahead of the world.

» **Industry**, where statisticians help improve production processes through the collection and analysis of data from production and business processes making companies more competitive.

» **Finance and insurance**, where statisticians contribute to investigations of the best way to invest capital to increase returns to pensions and other funds.

» **Market research**, where statisticians analyse consumer trends and investigate the launch of new products through market surveys.

» **Government**, where statisticians design and analyse census data to give advice to government on where to build new hospitals, schools, roads and so on.

» **Medicine**, where statisticians design and analyse clinical trials that help to produce safe and effective drugs that fight disease or relieve pain.

Throughout your career you will have a large variety of tasks even if you work in the same area for the whole of your career. One exciting aspect of working as a statistician is working with people from other areas (chemists, biologists, managers and production workers) and continually learning about their disciplines, their work and the problems they face.

You may need to undertake further graduate study for some careers in statistics. For example, the Crown Research Institutes tend to recruit students who have at least a masters degree.
COMPETING TO A MATHMATICAI SCIENGS
FACULTY HANDBOK 2014

SECTION 5 | STATISTICS

STATISTICS STAFF

CHAIRPERSON
Dr Lyn Hunt

ADMINISTRATOR
Tania Robinson
Email: trobinsn@waikato.ac.nz

SENIOR LECTURERS

Lyn Hunt
MSc DPhil Waik
Email: lah@waikato.ac.nz
Mixture models; missing data; three-way data.

Robert Durrant
BSc(Hons) Open MSc PhD Birm
Email: bobd@waikato.ac.nz
Big data; applications of measure concentration.

Chaitanya Joshi
BSc Mumbai MSc IITK PhD TCD
Email: cjoshi@waikato.ac.nz
Computational Bayesian Inference, Bayesian Modelling and Statistical Modelling.

Steven Miller
BSc(Hons) BCom PhD Auck
Email: smiller@waikato.ac.nz
Statistical Ecology; Statistical Genetics; Archaeogenetics.

Yoonsuh Jung
BS Korea MS PhD Ohio State
Email: yoonsuh@waikato.ac.nz
Modelling high throughput genetic data; robust modelling; model selection under high dimensional data.

SENIOR TUTORS

Ray Littler
MSc Auck PhD Monash
Email: littler@waikato.ac.nz
Biometrics; industrial statistics; statistical consulting.

Carolyn Munro
BSc(Hons) Otago DipTchg GradCertStat Waik
Email: cmunro@waikato.ac.nz
Computational Bayesian Inference, Bayesian Modelling and Statistical Modelling.

Ray Littler
MSc Auck PhD Monash
Email: littler@waikato.ac.nz

HONORARY FELLOW

Ray Littler
MSc Auck PhD Monash
Email: littler@waikato.ac.nz

HONORARY LECTURERS

Harold Henderson
BSc(Hons) Massey PhD C’nell
Email: harold.henderson@agresearch.co.nz
Dynamic statistical graphics; variance components; statistical application of matrix algebra; generalised linear mixed models; regression analysis; statistics and graphics software packages.

Hans Hockey
BSc MSc Waik
Email: hans@biometricsmatters.com
Agricultural statistics; medical statistics; statistical consulting.

If you wish to do a three-year degree which provides a solid grounding in statistics, then you may consider doing a BSc degree majoring in statistics. Doing statistics helps you to master a wide range of statistical techniques used for the collection and analysis of data. Such skills are attractive to a wide range of employers. Besides statistics papers, majoring students usually include some papers in Computer Science and in Mathematics. If you have an interest in economics, then you may prefer to choose the Economics specialisation in the BSc.

BACHELOR OF SCIENCE (BSc/BSc(Hons))

We list the requirements in the form of a “degree planner”.

<table>
<thead>
<tr>
<th>YEAR 1 – 120 POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT121A/S Introduction to Statistical Methods</td>
</tr>
<tr>
<td>MATH101A/B/S† Introduction to Calculus</td>
</tr>
<tr>
<td>MATH102A/B Introduction to Algebra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 2 – 120 POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT221A Statistical Data Analysis</td>
</tr>
<tr>
<td>STAT226B Bayesian Statistics</td>
</tr>
<tr>
<td>MATH251A Multivariable Calculus</td>
</tr>
<tr>
<td>MATH253A Linear Algebra</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR 3 – 120 POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3XX</td>
</tr>
<tr>
<td>STAT3YY</td>
</tr>
<tr>
<td>STAT3ZZ</td>
</tr>
</tbody>
</table>

* 100 LEVEL |

** 200 LEVEL |

*** 300 LEVEL |

**** 400 LEVEL |

† Undergraduate Mathematics and Statistics

‡ Undergraduate Computer Science

§ 100 LEVEL BSc/BSc(Hons)

¶ 200 LEVEL BSc/BSc(Hons)

** 300 LEVEL BSc/BSc(Hons)

*** 400 LEVEL BSc/BSc(Hons)
BACHELOR OF SCIENCE (BSc/BSc(Hons))

- These elective 100 level papers should be recognised science papers, which are all papers offered by the Faculty of Science & Engineering, all COMP, STAT and MATH papers (except MATH168), and PHIL102, PSYC102 and PSYC103.

- MATH251 (10 points) and MATH253 (10 points) may be replaced by an additional 20 points of 300 level STAT.

- One of these papers may be replaced by ECON304.

- BSc regulation 8 requires 105 points across at least four science subjects. MATH101 as well as COMP103 and COMP104 will help satisfy this requirement and are strongly recommended in their own right.

ADMISSION TO HONOURS PROGRAMME

Candidates will require B+ grades or better in at least 60 points in 300 level Statistics in the BSc and must have passed the prerequisites for the 500 level papers they wish to enrol in.

DOUBLE MAJOR

For a double major, students must complete:

- 120 points at 100 level
- 120 points at 200 level – 60 points in each major
- 120 points at 300 level – 60 points in each major

SPECIALISATION IN ECONOMICS

The purpose of this specialisation is to provide students with the skills and techniques needed for economic and statistical analysis. Statistical skills and a thorough understanding of economics are important in the analysis of economic data. People with both these skills are highly sought after by a wide range of private and public sector organisations. Most organisations in these sectors have a need for sound economic research and analysis based on valid data, appropriate econometric modelling and statistical inference.

For economics students the specialisation combines economics with a rigorous training in statistics, and for statistics students it addresses a very important application area. This programme integrates the strengths of the two departments of statistics and economics to produce graduates with a high level of skills in economics and statistical analysis.

SPECIALISATION – ECONOMICS

We list the Economics specialisation requirements in the form of a “degree planner”.

- **YEAR 1 – 120 POINTS**
 - STAT160A/B/T Management Statistics
 - COMP103A/B Introduction to Computer Science 1
 - COMP104B Introduction to Computer Science 2
 - MATH101A/B/S Introduction to Calculus
 - MATH102A/B Introduction to Algebra
 - ECON100A/B Business Economics

- **YEAR 2 – 120 POINTS**
 - MATH251A Multivariable Calculus
 - STAT221A Statistical Data Analysis
 - STAT226B Bayesian Statistics
 - MATH101A/B/S Introduction to Calculus
 - MATH102A/B Introduction to Algebra
 - ECON200A/B Macroeconomics
 - ECON202A Macroeconomics

- **YEAR 3 – 120 POINTS**
 - STAT3XX
 - STAT3YY
 - ECON304A Econometrics
 - ECON4XX

- **SPECIALISATION IN ECONOMICS**† This elective 100 level paper should be recognised as a Science paper, outside of STAT, COMP and MATH.

- **SPECIALISATION IN ECONOMICS**‡‡ ECON110 recommended.
SPECIALISATION IN DATABASES

The purpose of this specialisation is to provide students with the skills and techniques for administering and manipulating large databases to extract useful data for statistical analysis, and the ability to use statistical techniques for knowledge discovery.

For computer science students, the specialisation combines database management with a rigorous statistical training. For statistics students, the ability to use and manipulate databases for knowledge discovery is essential to ensure that useful data is extracted for statistical analysis.

The specialisation will produce graduates with a high level of skill in statistical analyses and database management.

SPECIALISATION – DATABASES

We list the Databases specialisation requirements in the form of a “degree planner”.

YEAR 1 – 120 POINTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP103</td>
<td>Introduction to Computer Science 1</td>
</tr>
<tr>
<td>STAT121</td>
<td>Introduction to Statistical Methods</td>
</tr>
<tr>
<td>MATH101</td>
<td>Introduction to Calculus</td>
</tr>
<tr>
<td>100 LEVEL¹</td>
<td>(Science Paper)</td>
</tr>
<tr>
<td>100 LEVEL¹</td>
<td>(Science Paper)</td>
</tr>
<tr>
<td>100 LEVEL¹</td>
<td>(Science Paper)</td>
</tr>
<tr>
<td>100 LEVEL</td>
<td>Elective</td>
</tr>
</tbody>
</table>

YEAR 2 – 120 POINTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT221</td>
<td>Statistical Data Analysis</td>
</tr>
<tr>
<td>STAT226</td>
<td>Bayesian Statistics</td>
</tr>
<tr>
<td>MATH251</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>COMP219</td>
<td>Database Practice and Experience</td>
</tr>
<tr>
<td>COMP258</td>
<td>Programming Usable Systems</td>
</tr>
<tr>
<td>200 LEVEL</td>
<td>Elective</td>
</tr>
</tbody>
</table>

YEAR 3 – 120 POINTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP329</td>
<td>Database Systems</td>
</tr>
<tr>
<td>STAT3XX</td>
<td>Elective</td>
</tr>
</tbody>
</table>

¹ These three 100 level papers should be recognised Science papers, with at least one of them outside COMP, STAT and MATH.

Elective papers may be replaced by papers at a higher level.

STATISTICS PAPERS – 100 LEVEL

100 LEVEL PAPERS

STAT111-14B (HAM) & 14A (TGA) & 14B (TGA) Statistics for Science
15 points

This paper provides a first course in Statistics for students in the Faculty of Science & Engineering. Microsoft Excel is used throughout. Topics include the presentation of data, elementary probability calculations, principles of experimental design, hypothesis testing and regression.

Prerequisite Paper(s) Admission to the BSc, or MATH168, or 18 credits at Level 2 NCEA Mathematics, or 14 credits at Level 3 in NCEA Statistics, Calculus or Mathematics.

Restricted Paper(s) STAT121 and STAT160.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures, one workshop, and one tutorial each week.

STAT121-14A (HAM) & 14S (HAM) Introduction to Statistical Methods
15 points

This paper is designed to provide an introduction to statistical data collection and analysis for students in statistics, science and technology, computer science and the social sciences. It covers a selection of the statistical tools necessary for the effective use and analysis of data in research and practice. It is a practical course that uses relevant examples to illustrate the use of statistical methods. This paper is an essential paper for anyone planning to do research or experiments in their studies or future careers.

Topics covered include general principles for statistical problem-solving; sampling and experimental design; techniques for extracting information from data; some practical examples of statistical inference; and the study of relationships between variables using regression analysis. The statistical computer software package, Minitab, is used for most of the statistical computations and graphical displays.

Prerequisite Paper(s) MATH168 or 18 credits at Level 2 NCEA Mathematics, or 14 credits at Level 3 in NCEA Statistics, Calculus or Mathematics.

Restricted Paper(s) STAT111 and STAT160.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures, one workshop, and one tutorial each week.
STATISTICS PAPERS – 100/200 LEVEL

STAT160-14A (HAM) & 14B (HAM) & 14T (HAM) & 14A (TGA) & 14B (TGA)
Management Statistics
15 points

This paper is an introduction to statistical thinking and concepts for managers and satisfies the core statistics requirement for the BMS degree.

All business activities are subject to variability. As a consequence all students in management need the ability to think statistically about how to deal with the resulting uncertainty and its effect on decision-making in management and commerce. This paper takes a very practical approach that presents statistical concepts with a minimum of mathematics. It focuses on statistical thinking and discusses a range of topics that specifically apply to management. The paper’s scenario based interactive format and the use of Excel facilitate and reinforce the learning experience.

The topics covered include understanding variability, problem-solving methods, need for and use of data, analysing attribute or qualitative data, statistical process control, sampling, estimation and margins of error, simple linear regression, multiple regression and forecasting.

Prerequisite Paper(s) MATH166, a B grade pass in MATH168 or 14 credits at Level 3 in NCEA Statistics, Calculus or Mathematics.

Restricted Paper(s) STAT111 and STAT121.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Four lectures and one tutorial each week.

Note(s): This paper is normally available to students enrolled in the BBA(Fin) and BMS degrees, or certain related programmes of study, such as BSoSc Economics majors.

200 LEVEL PAPERS

STAT221-14A (HAM) Statistical Data Analysis
20 points

Statistical Data Analysis is an essential paper for anyone planning to do research or experiments in their future studies or careers. The methodology given and applied in the paper is used in many areas of scientific research, for example in medicine, business analysis, sociological and policy research, engineering, and science. This is a practical paper with an emphasis on real data and real problems. Extensive use is made of computing through statistical software.

The topics covered include data collection and organisation, graphical methods, analysis of variance, regression and multivariate statistics. Students will need to take this paper in order to study further papers in statistics at 300 level.

Prerequisite Paper(s) STAT111, STAT121 or STAT160.

Restricted Paper(s) ECON204.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures and one tutorial each week.

STATISTICS PAPERS – 200/300 LEVEL

STAT226-14B (HAM) Bayesian Statistics
20 points

This paper introduces statistical methods from a Bayesian perspective, which gives a coherent approach to the problem of revising beliefs given relevant data. It is a paper that is suitable for students with a mathematical background and is particularly relevant for statistics, mathematics and computer science students.

Prerequisite Paper(s) At least one of STAT111, STAT121, MATH101 or MATH102.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures and one tutorial each week.

300 LEVEL PAPERS

STAT321-14B (HAM) Advanced Data Analysis
20 points

The purpose of this paper is to develop skills in the use of statistical packages for data analysis and modelling. The emphasis is on observational rather than experimental data. The topics covered are regression modelling and its generalisations; cluster analysis; principal components analysis and discriminant analysis.

Prerequisite Paper(s) STAT221.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures and one tutorial each week.

STAT323-14A (HAM) Design and Analysis of Experiments and Surveys
20 points

This paper outlines the principles and practicalities of designing and analysing experiments and surveys, with emphasis on the design.

Prerequisite Paper(s) MATH102 and STAT221.

Assessment Internal assessment/Final examination ratio 1:1.

Contact Hours Three lectures and one tutorial each week.
STATISTICS PAPERS – 300 LEVEL

STAT326-14B (HAM) Computational Bayesian Statistics

20 points
Computational Bayesian statistics introduces the big idea that Bayesian inference can be performed on random samples drawn from the posterior distribution. Methods are developed for drawing these samples, even when the posterior is only known in the proportional form. Either random draws from an easily sampled candidate distribution are reshaped into a sample from the posterior by only accepting some draws, or a Markov Chain is set up that has the posterior as its long-run distribution. A draw from the chain after it has been running a long time is a random draw from the posterior. This is known as Markov Chain Monte Carlo (MCMC) sampling. In this paper the emphasis is on the computer implementation of these methods using Minitab macros, WinBUGS, and other software.

Prerequisite Paper(s) STAT226 or STAT221.
Assessment Internal assessment/Final examination ratio 1:1.
Contact Hours Four lectures each week.

STAT352-14A (HAM) Statistics for Quality Improvement

20 points
This paper aims to equip students with the statistical skills needed to contribute to the important activity of continuous quality improvement. It covers the fundamentals of quality from a statistical point of view, statistical process control and capability, process design and improvement, and includes the design of industrial experiments. Students taking this paper will be preparing themselves for a career as an industrial statistician. As well as students in statistics this paper would be of particular interest to students studying management and management information systems.

Prerequisite Paper(s) STAT221.
Restricted Paper(s) ENGG381.
Assessment Internal assessment/Final examination ratio 1:1.
Contact Hours Three lectures and one tutorial each week.

STAT390-14A (HAM) & 14B (HAM) & 14Y (HAM) Directed Study

20 points
With the special permission of the lecturer and the Chairperson of Department, some students may nominate a field for study under the personal direction of a staff member.

Assessment Internal assessment/Final examination ratio 1:0.

ENGG381-14A (HAM) Engineering Statistics

20 points
This paper is aimed specifically at engineering students. It covers statistical models, experimentation for quality design and control, process measurement and improvement, statistical process control and capability, and reliability.

Prerequisite Paper(s) MATH101 and MATH102.
Restricted Paper(s) STAT352.
Assessment Internal assessment/Final examination ratio 1:1.
Contact Hours Three lectures and two laboratory sessions each week.
STATISTICS GRADUATE STUDY – INTRODUCTION

Statistics is the science of collecting, analysing, and interpreting data subject to uncertainty. We live in a world where variability is everywhere. To make informed decisions we must understand the nature of this variability, and make the use of meaningful information. Without data we have to resort to gut feeling or hunches, neither of which can be relied on. Statistics tells us how to deal with variability, and how to collect and use data so that we can make good decisions.

Almost every facet of modern life relies on some application of statistics. For example:
- Discoveries in medical science owe much to the statistical analysis of clinical trials;
- In agriculture, productivity increases have been achieved through the design and analysis of well-planned experiments;
- The quality of manufactured products has been improved using simple statistical process control methods;
- Good economic forecasts rely on the analysis of sound economic and financial data;
- Government planning and the provision of services are based on information collected using statistical methods of sampling.

We offer a variety of qualifications, for both graduate and postgraduate students, which reflect this need for statistics in the community. They range from one-year postgraduate diplomas to three-year research degrees. Staff in the Department of Statistics at the University of Waikato have considerable experience in teaching a wide range of applied and theoretical statistics papers, and are actively involved in research on a variety of statistical topics; see the section on Research Directions.

The Department provides good computing facilities. Our senior computing laboratory has a network of PCs running Linux and Windows 7. Software available includes Minitab, R, Mathematica, Matlab, C++, and Fortran 90. The internet and email are also available. We welcome both New Zealand and international students.

Further information about the Department can be found at: www.stats.waikato.ac.nz

Graduate students are valued members of the Department, and are encouraged to fully participate in both its social and academic life.

STATISTICS PAPERS NOT OFFERED IN 2014

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT389</td>
<td>Directed Study</td>
</tr>
<tr>
<td>STAT521</td>
<td>Computational Statistics – offered in alternate years with STAT522</td>
</tr>
<tr>
<td>STAT552</td>
<td>Industrial Statistics – offered in alternate years with STAT524</td>
</tr>
</tbody>
</table>
GRADUATE PAPERS

Papers at the graduate level may include lectures, practical work, special readings, assignments, presentation of seminars and a dissertation (30 or 60 points) or thesis (90 or 120 points). Further topics may be available through directed study by arrangement with the Chairperson. Normally students enrolled in the MSc programme take four taught papers over two years, and begin a four-paper (120 points) thesis during the first year of study. Entry to all graduate papers is by way of permission of the Chairperson of Statistics.

STAT522-14A (HAM) Statistical Inference
30 points
Statistical inference will be considered from both the classical and Bayesian perspectives. It covers maximum likelihood estimation, the properties of estimators, confidence intervals, and hypothesis tests. Bayes’ theorem is used to revise beliefs about the parameters given the data.
Assessment Internal assessment/Final examination ratio 1:0.

STAT524-14B (HAM) Statistical Consulting
30 points
You are offered a unique opportunity to learn some of the craft of statistical consulting in the real world, working with real data.
Assessment Internal assessment/Final examination ratio 1:0.

STAT525-14B (HAM) Topics in Statistics
30 points
Assessment Internal assessment/Final examination ratio 1:0.

GRADUATE PAPERS

STAT531-14B (HAM) Data Analysis and the Linear Model
30 points
Assessment Internal assessment/Final examination ratio 1:0.

STAT533-14A (HAM) Study Design and Statistical Inference
30 points
Assessment Internal assessment/Final examination ratio 1:0.

STAT590-14C (HAM) Directed Study
30 points

STAT591-14C (HAM) Dissertation
30 points

STAT592-14C (HAM) Dissertation
60 points

STAT593-14C (HAM) Statistics Thesis
90 points

STAT594-14C (HAM) Statistics Thesis
120 points
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

The list below will give prospective research students an indication of the research interests of the staff of the Department of Statistics. If you are considering a research-based degree, you are invited to discuss your interests with the Chairperson of the Department of Statistics, or directly with one of the staff members.

ROBERT DURRANT

BIG DATA

The enormous power of modern computers has made possible the statistical modelling of multivariate data with dimensionality that would have made this task inconceivable only decades ago. However, experience in such modelling has brought awareness of many issues associated with working in high-dimensional domains, collectively known as ‘the curse of dimensionality’, which can confound our desires to build good models from such data. When the dimensionality is very large, low-dimensional methods and geometric intuition both break down in these high-dimensional spaces.

I am interested in developing theory which reveals when and why popular current approaches can be expected to perform well (or badly), since this is often not well understood, and also in developing new and efficient approaches for big data settings with theoretical performance guarantees.

APPLICATIONS OF MEASURE CONCENTRATION

Various flavours of the law of large numbers (LLN) say that the normalised sum of many independent random variables will typically be close to its expectation. However, what is so special about sums of independent random variables that leads to this ‘concentration’ about the mean? It turns out that the important thing about summation is that it is a Lipschitz-continuous function, and that for independent random variables we still get such concentration if we replace summation with any other Lipschitz function. What about independence though? Concentration of measure is an active field of research that aims, amongst other things, to quantify the extent to which we can relax independence and still obtain such LLN-type effects.

Results of this type potentially have a wide range of practical and theoretical applications, within statistics and elsewhere, and I am interested in both developing and applying them.

SAMPLE PUBLICATIONS

RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

CHAITANYA JOSHI

RESEARCH AREAS
Computational Bayesian Inference, Bayesian Modelling and Statistical Modelling.

COMPUTATIONAL BAYESIAN INference AND BAYESIAN MODELLING
I am primarily interested in modelling complex real life processes using statistical methods. Mostly, I choose Bayesian methods for their flexibility and versatility. Such modelling often leads to interesting research problems in statistical methods. To this end, I am interested in developing computationally efficient methods for Bayesian inference. Presently I am working on improving the computational efficiency of non-MCMC based methods by using the low discrepancy sequences. I collaborate with Associate Professor Stephen Joe (Mathematics, University of Waikato) and Professor Simon Wilson (Statistics, Trinity College Dublin) on this project. We’ll be working on data from the European space agency (ESA)’s Planck space observatory.

STATISTICAL MODELLING
I have also been working on problems related to modelling species distribution. We have developed a novel mathematical framework called ‘Traitspace’ which incorporates the various processes/factors which govern the assembly of ecological communities via their functional traits and predicts the community assembly by using the observed trait values.

Recently I have also started working on a project aimed at predicting the Hospital occupancy rates based on the primary care data.

From 2003 until 2007, I worked as a statistician for a number of leading corporations in the pharmaceutical and market research area.

SAMPLE PUBLICATIONS
Laughlin, D.C., Joshi, C., Van Bodegom, P.M., Bastow, Z.A and Fule, P.Z. (2012) “A predictive model of community assembly via their functional traits and predicts the community assembly by using the observed trait values. Highly outlying observations are often removed to reduce the undesirable impact of the observation with the resulting sacrifice of degrees of freedom. To downsize the effect of outlying observations, a robust loss function such as Huber’s loss is also frequently used. With the aid of penalization, we add indicator for each case in the data set and attach a penalty term for these case-specific indicators to produce a robust model. The proper choice of penalty can lead to a desired effect.

MODEL SELECTION UNDER HIGH DIMENSIONAL DATA
Traditional model selection method such as AIC, BIC, and cross-validation have dealt with the case where number of variables is fixed and smaller than the sample size. The consistent (or, oracle) properties of the mentioned model selection methods are no more applied under the high dimensional data where the number of variables is far larger than the number of sample. One of the key research interest is to develop model selection under the high dimensional data where the number of variables may diverge.

SAMPLE PUBLICATIONS
RESEARCH DIRECTIONS AND SAMPLE PUBLICATIONS

STEVEN MILLER

ECOLOGICAL STATISTICS
The interface between ecology and statistics is a fertile ground for the development of novel statistical methods and applications. This area of research is of particular importance in New Zealand, due to the number of native species threatened by the introduction of exotic competitors and predators, and vulnerable to changes in habitat and climate.

POPULATION GENETICS
Technology in the field of genetics is advancing rapidly, and novel statistical methods are required to cope with the ever-increasing amounts of data. The amount, variety and types of genetic data now available allow for the fine-scale resolution of parameters governing the growth and spread of populations. This enables population histories to be reconstructed far back into the past, even when there is access to solely modern data.

STOCHASTIC DYNAMICS
The mechanisms underlying many natural processes are so complex that traditional means of analysis are thwarted. Due to advances in computing power, such problems can now be addressed via computationally intensive techniques such as numerical approximation and simulation. There is scope to enhance the efficiency of many of these computational algorithms, and to escape restrictive assumptions lingering from earlier methods of analysis.

SAMPLE PUBLICATIONS

SCHOLARSHIPS, AWARDS AND PRIZES

SCHOLARSHIPS
The Faculty of Computing & Mathematical Sciences offers a number of undergraduate scholarships.

COMPUTER SCIENCE UNDERGRADUATE SCHOLARSHIP
Each year the Computer Science Department offers up to 10 tuition fees scholarships for first year undergraduate students. The scholarships will have a value of up to $5,000 and will be credited to the tuition fees account of the successful applicants. It will not be refundable to recipients who withdraw from their degree (BSc, BE(Hons) or BCMS, or BCGD), and can be held concurrently with other scholarships. It will be the responsibility of the student to pay the balance of their fees.

The scholarship examination is open to Year 12 and Year 13 students only. All scholarship candidates must be New Zealand Residents (proof of citizenship or permanent residence may be required before the candidate is allowed to sit the examination). For more information please contact the Department of Computer Science.

The Scholarships are awarded on the basis of examination results of each applicant in the Waikato University Computer Science Scholarship Examinations, held each year in high schools. The examination is made up of two parts: a two-hour written examination and a six-hour practical examination and is roughly the equivalent to the practical programming tasks and final exam of the first year paper Introduction to Computer Science 1 at the University of Waikato, which gives students a basic level of competence in computer programming and computing concepts.

Two of the students awarded the Computer Science Undergraduate Scholarships for 2013 were Lanqin Yuan from Hillcrest High School, Hamilton, and Grady Hooker from Hamilton Boys’ High School.

Information on the Waikato University Computer Science Scholarship Examinations are sent each year to schools around New Zealand. Please enquire with your school for further information or contact the Department of Computer Science.

COMPUTER GRAPHIC DESIGN FEES SCHOLARSHIP – $5,000
The Computer Graphic Design Fees Scholarship is open to applicants who are enrolling in the first year of study towards an undergraduate degree with a major in Computer Graphic Design at the University of Waikato. All students wishing to be considered for the Computer Graphic Design Fees Scholarships must apply on the official Scholarship application form and submit this with their portfolio.

MATHEMATICS FEES SCHOLARSHIP – $5,000
The Mathematics Fees Scholarship is open to students enrolling in the first year of study towards an undergraduate degree with a major in Mathematics. Successful applicants will usually be intending to enrol in the Faculty of Computing & Mathematical Sciences, although in exceptional circumstances the Selection Panel may consider applicants who are enrolling in a Mathematics major through another School or Faculty.

The Scholarship to be awarded will be based on the results of a competitive examination.

STATISTICS FEES SCHOLARSHIP – $2,500
The Statistics Fees Scholarship is open to applicants who are enrolling in the second or third year of study towards an undergraduate degree with a major in Statistics at the University of Waikato. Successful applicants will usually be enrolled in the Faculty of Computing & Mathematical Sciences, although in exceptional circumstances the selection panel may consider applicants who are enrolled in a Statistics major through another Faculty or School. Up to two Scholarships may be awarded each year.

DEAN’S AWARD FOR EXCELLENCE
The awards will be presented to the best 10 students, in each level, enrolled in an undergraduate degree at the Faculty of Computing & Mathematical Sciences, as recommended by the Faculty Board of Examiners.
SCHOLARSHIPS, AWARDS AND PRIZES

ALAN TURING PRIZE
The Alan Turing Prize is awarded annually to the student who has performed best in a third-year programme of studies which includes at least two 300 level papers in Computer Science and at least two 300 level papers in Mathematics.

Alan Turing (1912-1954) was an English Mathematician who made fundamental contributions to mathematics and computer science. He developed the notion of a theoretical structure, now called a Turing Machine, which could model any computable process and which had been the basis of modern sequential computers. During World War II he contributed significantly to the work of the allies in breaking German codes.

THE A ZULAUF TRUST SCHOLARSHIP
This Scholarship was established in 2011 to promote the study of Mathematics at the University of Waikato. Candidates will, in the year of application, be enrolled or enrolling full-time to undertake the research portion of their masters degree. It is expected that the bulk of that research will take place in the year of application. All applicants, domestic or international, must meet the University’s enrolment criteria for masters level study.

The payment of this $5,000 Scholarship will be overseen by the Public Trust.

Further information and application forms are available from the website: www.waikato.ac.nz/scholarships

WAIKATO BRANCH NZFGW EMMY NOETHER PRIZE IN MATHEMATICS
The Waikato Branch NZFGW Emmy Noether Prize in Mathematics is awarded annually to the most outstanding woman student in her first year of Mathematics.

The Prize was made possible by the gift of a sum of money for capital investment from the Waikato Branch of the New Zealand Federation of Graduate Women.

SCHOLARSHIPS, AWARDS AND PRIZES

GORDON HARRIS BACHELOR OF COMPUTER GRAPHIC DESIGN PRIZE
The Gordon Harris Bachelor of Computer Graphic Design Prize is awarded every second year, to the top second-year student of the BCGD.

HILBERT PRIZE IN MATHEMATICS
The Hilbert Prize in Mathematics is awarded annually to the best student who has completed at least four papers at 300 Level in Mathematics in the year of the award.

JOHN TURNER PRIZE
The John Turner Prize is awarded to the student who achieves the highest mark for the 520 research project and report for the BCMS Honours paper Report of an Investigation.

The Faculty of Computing & Mathematical Sciences established the Prize in 1994, in recognition of Associate Professor Turner’s contribution to the Faculty, and with the aim of encouraging excellence in the Bachelor of Computing and Mathematical Sciences (BCMS) Honours paper Report of an Investigation.

MARGARET JEFFRIES PRIZE IN COMPUTER SCIENCE
The Margaret Jeffries Prize in Computer Science is awarded annually to the top female student taking second-year Computer Science papers at the University of Waikato in the year of award. Students will be considered for the award on the basis of their grades in their best three Computer Science papers in the year of the award.

This Prize was established in 2006 by the Department of Computer Science in memory of Dr Margaret Jeffries, Senior Lecturer in the Department from 2001-2006. This Prize is intended to encourage top female students to pursue studies in this field.
SCHOLARSHIPS, AWARDS AND PRIZES

MILLENNIUM PRIZE IN MATHEMATICS

The Millennium Prize in Mathematics is awarded annually to the most outstanding student who has completed two full-time years of study at the University of Waikato, and who is majoring in Mathematics or enrolling in a specified programme sponsored by the Department of Mathematics.

RAMANUJAN CENTENARY PRIZE

The Ramanujan Centenary Prize is awarded annually to the student who has completed the degree of Bachelor of Computing and Mathematical Sciences with the best overall performance.

The Prize was established in 1987 by Professor E.V. Krishnamurthy in the centenary year of the greatest Indian mathematician — Ramanujan. Ramanujan (1887–1920) was a great Indian mathematical genius gifted with amazing computing powers and intuition. In spite of his utter poverty and lack of formal university education, his single-minded devotion to mathematics raised him to the status of a great 20th century mathematician and the most romantic figure in the recent history of mathematics. Ramanujan is a source of inspiration to young students in mathematics and computing.

VON NEUMANN PRIZE IN MATHEMATICS

The Von Neumann Prize in Mathematics is awarded annually to a student in their first year of study at the University of Waikato, who is enrolled in at least one paper offered by the Department of Mathematics and who is, in the opinion of the Chairperson of the Department, the most outstanding first-year student and worthy of the award.

UNIVERSITY OF WAIKATO SCHOLARSHIPS

Below is information about three of the University of Waikato Scholarships available to students. The Scholarships Office is responsible for all administration associated with the scholarships and prizes awarded.

SIR EDMUND HILLARY SCHOLARSHIP PROGRAMME – FULL FEES

The Sir Edmund Hillary Scholarship Programme provides support for students studying at Waikato who have an established record of excellence in sport, or in performing or creative arts, exhibit leadership qualities, have University Entrance, and have achieved a specified number of credits at Level 3 NCEA in a specified number of approved subjects. Recipients of this award receive a full-fees Hillary Scholarship for the duration of their studies, academic support, leading coaches/tutors, free gym membership and a leadership and personal development plan. Visit: www.waikato.ac.nz/hillary/

THE VICE-CHANCELLOR’S ACADEMIC EXCELLENCE SCHOOL LEAVER SCHOLARSHIP

$5,000 towards fees or accommodation, awarded to students in their first year of study who gain NCEA level 3 Certificate with an Excellence endorsement*, University Entrance and meet the criteria for entry to their programme and in their first year are enrolled in a full-time programme.

THE UNIVERSITY OF WAIKATO ACADEMIC MERIT SCHOOL LEAVER SCHOLARSHIP

$3,000 towards fees or accommodation, awarded to students in their first year of study who gain NCEA level 3 Certificate with an Merit endorsement*, University Entrance and meet the criteria for entry to their programme and in their first year are enrolled in a full-time programme.

You are advised to submit your application to enrol by 1 December 2013. Your eligibility for the school leaver scholarship will be assessed when the University receives the 2013 NCEA results. (*or equivalent in CIE or IB)

The Scholarships Office is responsible for all administration associated with scholarships and prizes awarded by the University and outside sponsors. These include University of Waikato Scholarships, and New Zealand Vice-Chancellors’ Committee Scholarships. Students interested in applying for scholarships are encouraged to consult the Scholarships website (see below) and to subscribe to the monthly scholarships newsletter by emailing a request to that effect to the Scholarships Office.

For the closing date and further information about these scholarships please contact the Scholarships Office.

SCHOLARSHIPS OFFICE

The University of Waikato
Private Bag 3105, Hamilton 3240
Phone: +64 7 838 4489
Fax: +64 7 838 4600
Email: scholarships@waikato.ac.nz
Office hours: 8.30am to 5.00pm

You can also consult either the BreakOut Scholarships website at: www.fis.org.nz/BreakOut/ or the University of Waikato’s Scholarship website: www.waikato.ac.nz/scholarships
THE LIBRARY

The Library is located in the Student Centre/Te Manawa. The Library provides students with access to:

BUILDING RESOURCES
» Computers, laptops, photocopiers, scanners
» Group study rooms
» Quiet study spaces
» Comfortable social spaces.

STUDY AND RESEARCH RESOURCES
» Books/Journal articles/Proceedings/Technical reports – print and online
» Other resources (DVDs, maps, microfilms etc).

STAFF ASSISTANCE
» Library tours
» Tutorials (how to find, reference and present your information; computing skills)
» General queries and information (Information desks, online chat, Virtual Reference Desk, Facebook)
» 1:1 consultations with your Subject Librarian
» Interlibrary loans (loaning resources from other libraries).

You can find out more about the Library on our website: www.waikato.ac.nz/library

CONDITIONS OF USE OF FCMS COMPUTER LABS

By using our computing facilities, you agree to abide by the Computer Regulations as listed in the 2014 University of Waikato Calendar¹ as well as the following additional conditions and requests.

» Do not use another person’s account, even with their explicit permission.
» Do not do anything in the name of another user, including sending email messages.
» Do not deliberately disrupt or adversely affect the use of the facilities by other students.
» Do not unplug lab computers.
» Do not attempt to gain access to any system within, or external to, the University to which you are not entitled.
» Do not copy or interfere with software on the computers.
» Do not install or attempt to use any unlicensed software.
» Do not attempt to “break” any software or hardware protection.
» Do not act in a manner likely to cause damage to equipment – this includes the chairs.
» Ensure that your computer is properly logged off after use. Any costs incurred while the computer is logged in under your name will be charged to your account, even if you were not using that computer at the time. Please change your password immediately if you suspect that others know it.
» Do not use the computer systems to access, download or store any material that might be deemed inappropriate or be in violation of copyright law.
» You must provide your username to Computer Support staff if they request it in the course of their duties.
» Please report any theft or vandalism that you may observe.
» Technical and teaching staff may access your account as part of their duties.
» A computer account belongs to the University and is provided to you for the purposes of academic work.

¹ http://calendar.waikato.ac.nz/policies/computersystems.html
CONDITIONS OF USE OF FCMS COMPUTER LABS

A little consideration goes a long way...

» During busy periods in the labs, please give priority to students doing course-related work.

» Please leave a room in a timely fashion when asked to by staff, for example, when a lab has been booked for a class.

» Respect other users when using your mobile phone. If your phone rings, answer it, but please leave the lab and take the call in a corridor or outdoors.

» If listening to music or watching videos, please use headphones.

Non-compliance with the above conditions and requests can result in a range of penalties including but not limited to – the suspension of your account, referral to the University Student Discipline Committee, referral to the Police.

FOOD AND DRINK

Food and non-alcoholic beverages are allowed in the labs under the following conditions.

» Beverages are in containers with spill resistant lids. (ie, travel mugs, closed drink bottles, cans, etc.)

» Food is cold and produces minimal mess and smell. (ie, vegetables, cheese, raisins, chocolate bars, etc.)

» All spills, crumbs, smears, etc, must be cleaned up by the consumer.

» All garbage and waste materials are disposed of in the rubbish bins.

Although you can consume food and drink in the labs, please respect those around you and try to consume food and drink in the spaces provided outside of the labs where possible.