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Abstract 
Data mining is said to be a field that encourages data to speak for itself rather than 
“forcing” data to conform to a pre-specified model, but we have to acknowledge 
that what is spoken by the data may well be gibberish. To obtain meaning from 
data it is important to use techniques systematically, to follow sound experimental 
procedure and to examine results expertly. This paper presents a framework for 
scientific discovery from data with two examples from the biological sciences. The 
first case is a re-investigation of previously published work on aphid trap data to 
predict aphid phenology and the second is a commercial application for identifying 
and counting insects captured on sticky plates in greenhouses. Using support 
vector machines rather than neural networks or linear regression gives better 
results in case of the aphid trap data. For both cases, we use the open source 
machine learning workbench WEKA for predictive modelling and the open source 
ADAMS workflow system for automating data collection, preparation, feature 
generation, application of predictive models and output generation. 
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Introduction 
Data mining has many techniques for extracting knowledge from data, such as 
classification, regression, clustering and association rule mining. Its methods can 
be applied in many different disciplines. Within data mining methodology, 
researchers have a vast array of approaches at their disposal that range from 
simple data mining methods, such as decision trees, to more sophisticated ones, 
such as support vector machines. WEKA (Hall et al. 2009) is an open source, 
cross-platform machine learning workbench written in Java and was developed at 
the University of Waikato. The workbench offers many of these techniques through 
an easily accessible graphical user interface. Both data exploration and statistical 
experimentation are possible using this software. In this study we demonstrate the 
use of the ADAMS scientific workflow system (Reutemann & Vanschoren 2012) 
that supports rigorous experimentation, captures process for repeatability and 
deployment of resulting models. A workflow allows a user to define and annotate 
each step of data collection, preparation, processing, evaluation and output or 
graph generation, through a graphical user interface. System capability is 
demonstrated using two case studies. The first case study uses a scientific 
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workflow from a research perspective while the second shows how to move from 
research to commercial application using the system. 

Materials and methods 
Various data mining techniques are applied to a crop protection database to extract 
information to stimulate future research and to demonstrate potentially informative 
patterns that can be extracted from the data. 

The crop protection data used in this study comprises trap catches for Myzus 
persicae in a large number of locations throughout Europe and has been 
previously discussed in detail in Cocu et al. (2005). The data comprises aphid 
counts gathered by a European network of suction traps, obtained from the 
EXAMINE database (http://www.rothamsted.ac.uk/insect-survey), and enriched 
with geographical and climatic variables. Table 1 gives an overview of the variables 
and Figure 1 shows a portion of the data visualized with an ADAMS workflow, 
using its geographic information system (GIS) capability. 

Table 1. Overview of variables. All areas are in ha with a circle of R = 75km. 

Variable Description 

trap_name, trapID Trap identification 
lat, long, alt Latitude, longitude and altitude associated with the trap 
year Year the data were collected (1969-2002) 
XRn, XPRn Mean rainfall in month X; collection year, previous year 
YTmp, YPTmp Mean temperature in month Y; collection year, previous year 
Cn Mean temperature of the coldest n days 
CnPm Mean temperature of the next m days after the coldest n days 
ConFor, DecFor, 
MixFor, Grass 

Coniferous, deciduous, mixed forest, grass land 

WaterI, Urban, Sea Inland waters, urban areas, sea 
ArableR, CropPer Arable land, permanent crops 
Shrub, Barren, 
Frozen, Wetland 

Shrubland, barren land, frozen areas, wetlands 

MpeJd5thFlt Julian date of 5th aphid caught in trap (Mpe = Myzus persicae) 
MpeLgTotW52 log10 (n+1) transformed annual numbers of aphids 

For our experiments, we develop models to predict the Julian date that the 5th

aphid was caught for timing prediction (“MpeJd5thFlt”) and the log10-transformed 
annual numbers of aphids (“MpeLgTotW52”) for aphid abundance. All records that 
contain missing values were removed, as well as trap name and ID variables. 
Similar to Cocu et al. (2005), we use multiple linear regression (LR) and neural 
networks (multi-layer perceptron using backpropagation (MLP) with various 
parameter settings. However, we further evaluate M5' model trees (Quinlan 1992, 
Wang & Witten 1997), Gaussian processes (GPD) (Rasmussen & Williams 2006) 
and support vector machines for regression (SMOreg) (Shevade et al. 1999) to 
model the data. To run the experiments, we use the WEKA Experimenter as 
supplied by the ADAMS system. 
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Figure 1. Geographical visualization of the Myzus persicae data set, 
displaying a subset of the data collected and a dialog with the details 
associated with the data point on the map that the user clicked on.  

Results and discussion 
In the experiments, we performed 10 runs of 10-fold cross-validation, using the 
corrected paired t-tester (Nadeau & Bengio 2003) for statistical analysis. The 
results for the best parameter settings for each algorithm are shown in Tables 2 
and 3, showing the correlation coefficients and root mean squared errors of the 
observed and predicted data. 

Though not significantly better than linear regression, the support vector machine 
(SMOreg) gave the highest correlation coefficient for predicting the Julian date, 
with the neural network (MLP) performing the worst. However the support vector 
machine performed significantly better than linear regression predicting the log10-
transformed annual numbers with respect to both the correlation coefficient and 
root mean squared error. 

Table 2. Comparing various regression algorithms with respect to their 
correlation coefficient, with LR. The symbols, a and b, indicate whether the 
result is significantly lower or higher, respectively, than LR at P=0.05. 

Dataset LR M5' MLP GPD SMOreg 

MpeJd5thFlt 0.81±0.05 0.78±0.05 0.76±0.06a 0.81±0.04 0.83±0.04 
MpeLgTotW52 0.76±0.06 0.77±0.04 0.76±0.04 0.78±0.04 0.83±0.03b



The plant protection data toolbox 

- 170 - 

Table 3. Comparing various regression algorithms based on their root mean 
squared error, compared with LR. Symbols, a and b, indicate whether the 
result is significantly lower or higher, respectively, than LR at P=0.05.  

Dataset LR M5' MLP GPD SMOreg 

MpeJd5thFlt 25.66±10.77 29.31±3.31 29.79±4.16 25.07±3.09 23.53±3.27
MpeLgTotW52   0.43±0.09   0.44±0.04   0.47±0.05   0.41±0.03   0.37±0.0a

Further data mining 
Inexpensive and ubiquitous sensors enable us to collect large amounts of data. 
However, more is not always better. Algorithms are usually sensitive to the amount 
and order of the data presented to them. Finding a good subset of attributes can be 
achieved with attribute selection. For the sake of demonstration, one question that 
we could ask about the country data is whether we can we identify the “country” 
based on the land use, land cover and climatic attributes alone? Not only do we 
want to have a model that explains the data very well, we also want it to be easily 
interpreted by humans. Decision trees, like J48 (WEKA's C4.5 implementation), are 
a good candidate. For this experiment, we remove the following variables from the 
data: trap_name, trapID, year, long, lat, MpeJd5thFlt, MpeLgTotW52. When built 
on the remaining data set, J48 generated a tree comprising 65 nodes and 33 
leaves. Accuracy from a single run of 10-fold cross-validation was 99.5% (only 7 
out of 1492 examples were misclassified (Figure 2).

Figure 2. J48 decision tree for determining country generated from the full 
Myzus persicae data set. 
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Can each country be identified using fewer attributes? WEKA's attribute selection, 
BestFirst search algorithm using default parameters, and the WrapperSubsetEval, 
using J48 were applied to the data. The result was a dataset comprising only the 
following four landcover and landuse attributes to identify each country, the amount 
deciduous forest (DecFor), permanent crops (CropPer), arable farmland (Arable), 
and urban area (Urban). Evaluating J48 on this reduced data set, resulted in a 
perfect accuracy of 100% on a single run of 10-fold cross-validation. However, this 
comes at the cost of larger trees. The resulting tree had 95 nodes and 48 leaves 
(Figure 3). Both models are very good and choosing between them depends on the 
objective of the model (or a combination of them). For example, a smaller tree, 
higher accuracy or fewer attributes. Care needs to be taken however, where higher 
accuracy can be misleading. High accuracy may not necessarily represent a more 
comprehensive model, it may mean that the model fits the noise present in the data, 
better. A smaller model on the other hand, can often give better generalization, 
though an overly aggressive pruning method can result in a too simplistic model. 

Figure 3. J48 decision tree (detail) for determining country based on 
variables DecFor, ArableR, CropPer and Urban from the Myzus persicae data 
set. 

So far, we have analyzed the data set as a whole. What about using localized 
models, i.e. per country? Do they perform better or worse? We use a workflow to 
split the data with “MpeLgTotW52” as response variable into country subsets and 
evaluated them using a correlation coefficient between the observed and predicted 
data using the best algorithm settings obtained from the previous experiments. 
Since 10-fold cross-validation is used, only countries with at least 10 data entries 
were considered. Due to the large variation in number of entries, we expected the 
correlation coefficient to vary a lot. For example England had 412 data entries over 
site years, whereas Ireland had 12. The result is shown in Figure 4, with the bar 
graph showing the percentage of data entries for each country. As expected, 
England, France and Scotland produce the best models, since they have the 
highest percentage data entries. However, the Czech Republic with its five trap 
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locations, generates a reasonably good model with only 55 data entries. This graph 
suggests that for most countries more data is required before reasonable individual 
models can be generated. 

Figure 4. Per country plot of correlation coefficient obtained from single run 
of 10-fold cross-validation. The bar plot shows the percentage (0-1) of data 
entries per country from the overall data set. 

Sticky plates 

The previous sections discussed the development of models for crop protection. 
Once a model has been developed, it can be deployed. Using a data-driven 
workflow system, like ADAMS, the necessary collection and preprocessing steps 
can be specified and automated, providing the model with data in the required 
format and converting its output into other formats for further processing. The 
following sections describe briefly the development of the next generation of the 
Scoutbox system (http://scoutbox.nl/en/). The system, sold by Cropwatch BV is a 
part of the DutchSprouts BV (http://www.dutchsprouts.com/) system. Scoutbox is 
used for counting insects captured in traps using yellow sticky plates in 
greenhouses, enabling the customer to monitor trends in insect populations. 

Process 
The greenhouse operator places sticky plate traps in various fixed locations in the 
greenhouse and collects them at regular intervals by taking high-resolution 18 
mega-pixel pictures using the Scoutbox system. The images are uploaded and 
processed in batches in the cloud. Through the Scoutbox portal, the customer can 
view the count history for various insects such as the greenhouse whitefly, 
Trialeurodes vaporariorum, the predatory bug, Macrolophus caliginosus, and 
western flower thrips, Frankliniella occidentalis), determining whether biological or 
chemical intervention is required. 

System 
In contrast to the Myzus persicae data set discussed earlier, no expert is required 
to identify and count the insects, once the models have been generated and 
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deployed. An expert is only required during training time, to identify the insects on 
the sticky plates. The system locates objects, insects or otherwise, on the plate 
images and extracts these as cropped sub-images. These sub-images, after being 
presented to the expert and labelled accordingly, are then added to training sets. 
From these training sets of images, various features determined to be robust, 
through a series of experiments, are generated and used as input for data mining 
algorithms provided by WEKA. The ADAMS workflow system provides the image 
analysis functionality for locating insects on a plate, generating the features and 
building or applying the models. In production, the workflow also performs optical 
character recognition of ID tags (associating the plates with customers), generates 
formatted output that the Scoutbox system integrates in its data warehouse used 
for visualizing the insect data for the customer. The steps for locating insects and 
feature extraction are shared between the model building and production workflows. 
Figure 5 shows a schematic diagram of how the overall production system works. 

Figure 5. Schematic diagram for the data flow of the Scoutbox application, 
using ADAMS as its data processing back-end.  

Conclusion 
Data mining can be a powerful tool when analysing crop protection data provided 
there are sufficient amounts of it. Depending on whether the goal, is interpretability 
(e.g. application of a linear regression) or accuracy (e.g. using a support vector 
machine), different techniques may be selected. Workflows can capture the 
different steps involved in data collection, cleansing, transformation, prediction and 
output generation, documenting the complete process, therefore providing greater 
repeatability. As new data is created, previous experiments for evaluating models 
can be re-run at no extra cost to validate or invalidate previous hypotheses. The 
use of workflow applications also helps to demonstrate whether a research 
prototype, for example, a predictive model developed for publication, might be 
turned into a commercial production system. 
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