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Abstract: One of the uses of Gas Chromatography-Mass Spectrometry (GC-MS) is in
the detection of pesticide residues in fruit and vegetables. In a high throughput labora-
tory there is the potential for sample swaps or mislabelling, as once a sample has been
pre-processed to be injected into the GC-MS analyser, it is no longer distinguishable by
eye. Possible consequences of such mistakes can be the destruction of large amounts
of actually safe produce or pesticide-contaminated produce reaching the consumer. For
the purposes of food safety and traceability, it can also be extremely valuable to know the
source (country of origin) of a food product. This can help uncover fraudulent attempts
of trying to sell food originating from countries deemed unsafe. In this study, we use the
workflow environment ADAMS to examine whether we can determine the fruit/vegetable,
and the country of origin of a sample from a GC-MS chromatogram. A workflow is used
to generate data sets using different data pre-processing methods, and data represen-
tations from a database of over 8000 GC-MS chromatograms, consisting of more than
100 types of fruit and vegetables from more than 120 countries. A variety of classifica-
tion algorithms are evaluated using the WEKA data mining workbench. We demonstrate
excellent results, both for the determination of fruit/vegetable type and for the country of
origin, using a histogram of ion counts, and Classification by Regression using Random
Regression Forest with PLS-transformed data.
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1 INTRODUCTION

Analysis of pesticide residues in fruit and vegetables is an important part of food safety
monitoring. Guidelines and regulations are issued by government agencies, like the EU
parliament or the Food and Drug Administration (FDA) in the USA, to protect consumers.
Pesticide residues are often detected and quantified using Gas Chromatography-Mass
Spectroscopy analysis (GC-MS), which we describe in more detail later. GC-MS typically
has limits of detection from the sub parts-per-million down to the low parts-per-billion, de-
pending on the type and setup of the instrument. Modern analysis involves searching for
an ever increasing number of pesticide compounds, typically numbering in the hundreds.

Different products can have very different permitted pesticide residue levels. For this
reason, ensuring that the sample being analysed is– as labelled– is very important. Mis-
labelling can happen through human error during sample preparation in the laboratory, or
by the client before being sent to the laboratory. A laboratory will often receive samples
that have already been prepared, and the original material can not be visually identified.
Mislabelling can have serious consequences, either in food safety, with produce being
sent to market with pesticide levels above permitted thresholds, or economically, with
produce being destroyed unnecessarily.
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The question we examine in this paper, is whether we can use the chromatographic data
alone to distinguish between types of produce samples. Thus enabling us to identify
whether a sample was labelled correctly and the appropriate pesticide level(s) applied.
The machine learning approach presented here uses a qualitative approach to GC-MS
(i.e., determining sample type), in contrast to the usual quantitative approach in labora-
tories (i.e., determining compound concentrations).

One way of answering this question is to determine a list of compounds that are ex-
pected to differentiate the various fruits and vegetables, and explicitly measure those in
addition to the pesticides. Modelling would then be done on the determined concentra-
tion of these compounds. However, assuming that a suitable list of compounds could be
readily found, this approach places a significant extra burden on the analysis (in terms
of both time and cost). Also, the historical database of sample data would have to be
re-analysed to measure the concentrations of these extra compounds. Depending on
the compounds chosen for extra analysis, the GC-MS application may have to be al-
tered (e.g., additional internal standards, or increased run-time), which would mean the
existing database would not be compatible with newly analysed samples. Instead, the
approach we use is to see what we can determine automatically by a combination of
data pre-processing (primarily noise reduction techniques) and machine learning start-
ing from the raw chromatogram as produced by the instrument, with purely automated
techniques. With this approach, the entire database of chromatograms is available for
analysis, and a system which alerts to the possibility of an incorrectly labelled sample
would require no changes to laboratory practice.

The remainder of the paper is structured as follows: first, we give a short introduction
into the GC-MS domain in Section 2, before explaining some of the pre-processing tech-
niques in Section 3. Then, since we are using a workflow system for most of the tasks
presented here, Section 4 explains the workflow engine in detail. After that, Section
5 shows the conducted experiments and their results, before Section 6 concludes the
paper.

2 GC-MS

According to WikiPedia [2012], GC-MS is “a method that combines the features of gas-
liquid chromatography and mass spectrometry to identify different substances within a
test sample. Applications of GC-MS include drug detection, fire investigation, environ-
mental analysis, explosives investigation, and identification of unknown samples”. In
Holmes et al. [2010], we showed the successful application of data mining in environ-
mental analysis, predicting concentrations of polycyclic aromatic hydrocarbons in soil
and water samples.

2.1 Sample analysis

Figure 1: Instrument schematic.

The sample under investigation is injected into the
column head by the sample injector (see Figure 1).
The carrier gas then propels the sample through the
capillary column. Depending on the chemical and
physical properties of the molecules (e.g., size), these
will elute (exit) the column at different times (reten-
tion time). When they elute, the mass spectrometer
breaks up the molecules into charged fragments, e.g.,
using an ion source, and the fragments are subjected to a magnetic field. Depending on
their mass-to-charge ratio (m/z), the flight path of the fragments will differ and end up in
different ion traps used for counting (abundance count).
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2.2 Chromatograms

A GC-MS instrument produces data for a sample termed a chromatogram. This is
essentially a succession of ion abundance counts produced by the mass spectrometer.
Figure 2 depicts a potato sample. The top panel shows the total ion count, which is
the sum of all ion abundances at each time stamp. The bottom panel shows the mass-
spectrometer (mass-spec) data from a single time stamp. Here, the x-axis is m/z of the
ion, and the y-axis is the abundance.

Figure 2: Raw chromatogram. Figure 3: Cleaned up chromatogram.

One way of viewing this data, is that the peaks in the top panel (total ion count panel) rep-
resent compounds eluting from the gas chromatograph, and the bottom panel provides
further detail about the compound provided by the mass-spectrometer. Compounds have
an expected mass spectrometry profile - the ion abundance ratios provide a fingerprint
for a particular compound. The combination of the expected retention time of the peak
in the top panel, and the mass-spec fingerprint in the bottom panel can usually iden-
tify the compound producing the peak. Difficulties arise when compounds elute at the
same time, or, as the top panel in the above example shows, with the rising baseline,
when contamination leads to ion abundances being present across large sections of the
chromatogram, and thus confusing the mass-spec fingerprint. Later, we describe some
techniques to reduce noise in the ion abundances.

2.3 Pesticide data

The pesticide data used in this study was generated by two Thermo Scientific instruments
(Trace GC 2000 Series Voyager GC/MS) in full-scan mode, collected over nearly two
years. The data set consists of approximately 8000 labelled chromatograms, from over
100 different types of fruit and vegetables, and 120 countries. Each chromatogram has
over 4000 scans for each of approximately 350 m/z ratios (ions). This results in around
1.4 million data points for each sample.

3 PRE-PROCESSING

The raw data, as generated by the instrument management software is not generally
amenable to processing by machine learning systems. Firstly, chromatograms are multi-
dimensional, and need flattening in some way. This is compounded by chromatograms
having a differing number of data points in each dimension (both in the number of scans,
and in the ion abundances per scan). Machine learning software, such as WEKA (Hall
et al. [2009]), use the attribute-value format for data storage, where an attribute is ex-
pected to have the same meaning across examples. Therefore some form of normalisa-
tion is necessary across samples. The issue of retention time drift also has an impact on
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normalisation. Either due to contaminants building up in the column of the gas chromato-
graph, or the constituents of the sample, or previous samples run through the instrument,
or even routine maintenance, the time taken for compounds to emerge from the instru-
ment may vary from run to run. As a result, the x-axis (time) shifts non-linearly over
time. During the normal course of operation, a column can also be trimmed to remove
contaminants, or replaced entirely, resulting in a very different chromatographic profile.
Several alignment algorithms, for example, Correlation Optimised time Warping (Tomasi
et al. [2004]), have been proposed to account for these shifts.

Figure 4: Three “beans with pods”.

It is clear from examining chromatograms
over time however, that the non-linear re-
tention time shift exhibited is difficult to
overcome. With complex, noisy chro-
matograms containing many peaks that
differ between quite different samples
(Figure 4), alignment algorithms can pro-
duce very different alignments depending
on parameter settings and the freedom
permitted. With this in mind, we have investigated a flattening scheme that does not
use the time axis, i.e., no use of alignment methods. Instead we have experimented with
various strategies using the m/z ratio, and counting the number of occurrences, or pres-
ence/absence of m/z ratios, throughout the chromatogram. An issue with this technique,
is the presence of noise, particularly that caused by contamination of the column. This
leads to ion abundances being measured across large sections of the chromatogram.
To compensate for this, we have experimented with a range of noise removal algorithms
(and their combinations), combined with flattening techniques. Examples of such tech-
niques include:

• Windowed ion noise removal (WIN) - a sliding window of abundances are exam-
ined, and a multiple of the lower-quartile of the abundances is subtracted from
each abundance.

• Top x ion abundances (TOP) - remove all but the x ions with the topmost abun-
dances.

• Global ion noise removal (IN) - evaluate each ion for abundances being present
over significant parts of the chromatogram. If considered noise, a noise factor is
subtracted.

• Minimum abundance (MIN) - remove ion abundances if less than a given threshold.
• Minimum consecutive ion abundance (CON) - ion abundances are zeroed if they

do not appear in a given number of consecutive scans. This is especially useful for
cleaning up left-over ion abundances after noise removal filters have been run.

The number of combinations of pre-processing, noise removal, and classification algo-
rithms is very large, and processing is slow due to the size of the data. In order to
automate the analysis as much as possible, we use a workflow system to generate data
sets. This is described in the following section. Figure 3 is the same potato sample
shown earlier, but after noise removal algorithms have been applied.

4 WORKFLOW

4.1 Introduction

The workflow engine of the ADAMS1 framework (Advanced Data mining and Machine
learning System), which is used as the basis for this application, uses a different ap-
proach than most current workflow applications. Systems, like Kepler (Ludäscher et al.
1The ADAMS base platform, excluding the GC-MS modules, is expected to be released as open-source at the
end of 2012.
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[2006]) and RapidMiner (Mierswa et al. [2006]), use a “canvas” approach in designing the
workflows. In this approach, the user places the various operators (or “actors” in Kepler
and ADAMS terminology) on a large canvas and then connects the various inputs and
outputs manually. Though this is a very intuitive approach to design, it is also a very time
consuming one. When inserting an additional pre-processing step, potentially in multiple
places in numerous processing branches, the user ends up moving and rearranging a lot
of actors in order to keep the design tidy. Despite methods, like meta-actors that encap-
sulate multiple actors, zooming in/out or bird’s-eye-view, large workflows quickly become
hard to maintain.

Figure 5: Kepler example workflow.

Most of our workflows tend to have a tree-like
structure, i.e., 1-to-n connections: data comes
from a single source, undergoes some general
transformation and forks into multiple branches
with different transformations, before ending up
in, for example, files. A tree-structure could there-
fore determine how the data flows.

In a conventional tree, processing steps that fol-
low each other would be in a parent-child relationship. ADAMS uses a slightly different
approach as it distinguishes between primitive actors and ones that handle other actors
(fixed or variable number). In the latter case, the managed actors become the children of
the managing actor, which also knows how the data flow is to be handled. For instance,
the Flow actor uses the output of one sub-actor as the input to the next sub-actor.
The Branch actor, on the other hand, forwards the same data to all of its sub-actors,
i.e., its branches. The Tee actor, like the Unix tee command, forks the data into a
separate branch. This approach allows for a compacted tree structure. Visual cues are
used to hint at how the data flows in the tree: for example, the Flow actor uses vertical
lines between the sub-actors and the Branch and Tee actors use horizontal lines for their
sub-actors.

Using a tree structure limits the flow connections to 1-to-1 and 1-to-n connections. n-
to-1 or n-to-m connections are not possible. In addition, the same output cannot be
used several times within the flow. ADAMS adds several mechanisms to alleviate this
shortcoming: global actors, containers, variables, storage. First, global actors are used
to allow n-to-1 connections. Special actors reference globally defined actors, therefore
synchronising the data flow to these global actors. Second, containers, are used to
encapsulate multiple outputs in a single data structure as key-value pairs. The Con-
tainerValuePicker actor can be used to extract the various values from containers. Third,
variables can be used to dynamically update options in the flow at run-time, simulating
multiple inputs. Fourth, each flow offers internal storage for key-value pairs for storing
arbitrary data structures. Data can be stored and retrieved multiple times in the flow. This
allows for connections across sub-trees in the flow.

4.2 GC-MS Application

The application consists of three phases, each represented by a workflow:

1. data collection phase: the training data for the machine learning model is gener-
ated.

2. training phase: a machine learning model is built using the previously generated
data and stored on disk.

3. prediction phase: incoming data is pre-processed in the same way, the model
applied to obtain predictions and a PDF report is sent via email.



G. Holmes et al. / An application of data mining for fruit and vegetable sample identification using GC-MS

Phase two, the training phase, consists of a very simple workflow (load data, train model,
save model) and is hence omitted. The other phases are explained in more detail below.

Data collection. Data collection is a time consuming process, due to the size and num-
ber of available chromatograms, and can take up to twelve hours. For testing various
pre-processing techniques, the data is only retrieved once and then distributed into multi-
ple branches, generating multiple data sets. Figure 6 shows how the data is loaded from
the database, using the ChromatogramIdSupplier and ChromatogramDbReader actors.
After that, common pre-processing takes place: this includes noise removal (Windowed
ion noise, Global ion noise) and the trimming of the m/z data (removal of m/z points
with low abundance, retaining only the topmost common m/z points). Using Tee actors,
the chromatogram can be branched off and further pre-processed, if required, before
being appended to a data set (see Figure 6). For turning a chromatogram into data suit-
able for WEKA, we only considered m/z ratios from 35 to 395. For each chromatogram
a histogram of m/z ion counts is generated, which reduces the number of data points
from around 1.4 million to less than 400. The data sets can then be evaluated on mul-
tiple classification algorithms using the WEKA Experimenter, to determine the best pre-
processing/classification algorithm combination. See section 5 for details and results.

Prediction phase. In order to make the sample identification as easy as possible, the
workflow performing the predictions is run as a background process, with the analyst
only having to place the raw chromatogram files in a directory to be processed. The
workflow (see Figure 7) monitors this directory and starts the processing whenever a file
appears. First, it loads the raw chromatogram and subjects it to the same pre-processing
that generated the best results in the training phase. Images of the total ion count (TIC)
and base ion count (BIC; only most abundant ion at each time stamp) are generated and
output. The trained model is applied to the chromatogram and the classification and class
distribution obtained to be included in the report. Based on the predicted classification
label, the appropriate picture is chosen and, together with a table comprised of the five
most likely classifications and the TIC and BIC images, added to a PDF document. The
generated PDF report is then sent to the analyst’s email address (see Figure 8).

Figure 6: Training data generation. Figure 7: Report generation.

5 EXPERIMENTS AND RESULTS

In this paper, we aim to determine two things; whether we can distinguish the type of
fruit/vegetable, and the geographic origin of a sample from its GC-MS chromatogram
alone. We use the WEKA suite for comparison of modeling techniques using the pre-
processed data generated using the workflow system previously described. The data
sets were analysed using the comprehensive 10 by 10 cross-validation with significance
testing to 5% significance via the corrected paired t-test (Nadeau and Bengio [2003])
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Figure 8: Sample PDF report.

as used in the WEKA Experimenter. The results shown are from five algorithms, Naive
Bayes, J48 (WEKA’s C4.5 implementation), Random Forest, and two examples of Clas-
sification Via Regression, one using Partial Least Squares (PLS), and the other using a
Random Regression Forest of PLS-transformed data.

5.1 Fruit/vegetable type

Table 1 shows results for the five machine learning algorithms, using the raw and pre-
processed (noise removal) chromatographic data. The numbers shown are the percent-
age correctly predicted on average over 100 randomised cross-validation splits. The
standard deviations are given after the ±. Significant improvement in the prediction ac-
curacy is apparent in the pre-processed data, with the best result approximately 95% cor-
rect for the Classification Via Regression model, using Random Regression Forest with
PLS-transformed data. The wide range of results shows the impact of pre-processing on
an algorithm’s performance, with the best combination of these two being the ultimate
goal. A CVR-RRF model built on the Clean dataset is used in production.

Dataset NB J48 RF CVR-PLS CVR-RRF
Raw 11.92± 1.32 51.31± 1.83◦ 67.79± 0.60◦ 45.40± 1.20◦ 66.69± 1.18◦
WIN 10.81± 0.85 40.99± 1.16◦ 62.58± 1.53◦ 70.81± 1.34◦ 88.17± 0.69◦
Clean 76.23± 0.90 77.20± 1.44 92.36± 0.58◦ 89.44± 0.99◦ 94.77± 0.78◦

Table 1: ◦,• stat. significant improvement/degradation; Clean=WIN+IN+MIN+TOP+CON.

Incorrectly classified chromatograms mainly stem from vegetables that are hard to distin-
guish, like onion/shallot and beans/peas with and without pods, and vegetables with very
few occurrences in the database, like olives and figs (less than five samples).

5.2 Country of origin

For the analysis of the geographic origin of the sample, there is less data due to the origin
not necessarily being recorded in the database. We have chosen to split the data set into
produce type, to see if the origin of a particular fruit or vegetable can be determined. For
example, to determine if we can distinguish an apple grown in x from an apple grown in
y. This reduces the amount of data for testing, as many types of produce have primarily
one source in the data we have at hand.
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Dataset NB J48 RF CVR-PLS CVR-RRF
Beans 75.83± 6.80 77.79± 11.12 89.86± 5.28◦ 94.67± 6.37◦ 94.67± 6.37◦
Grapes 88.12± 7.69 84.87± 7.49 94.68± 3.34 96.32± 2.29◦ 96.72± 3.23◦

Table 2: ◦,• statistically significant improvement or degradation.

Table 2 shows results distinguishing “Beans with pods” between three geographic ori-
gins, Kenya, Morocco and Thailand, and “Table Grapes” between India and South Africa
(insufficient data for other origins). The results show we can clearly distinguish the ge-
ographic origin for those fruit/vegetable types. Further investigation would be needed
to understand whether it is truly geography - such as trace elements from local growing
conditions, or perhaps that the different geographic locations grow different subtypes of
a particular fruit/vegetable. In the database available to us, very few subtypes are la-
belled. Labelling will increase over time as new samples are taken, making further study
possible once sufficient data is collected.

6 CONCLUSION AND FUTURE WORK

We have shown in this paper that data mining can be used to support analysts in lab-
oratories in terms of quality control, minimizing the impact of accidental sample swaps.
Clearly, proper pre-processing of the data is paramount for achieving good results, ob-
taining as few misclassifications as possible. The promising results of the “origin” test
could lead to future work, involving how this approach can be applied, for example, for
testing produce shipments for potential fraud. Furthermore, it still needs be verified that
our approach works across more than just two instruments as used here.
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Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,
and Y. Zhao. Scientific workflow management and the kepler system. Concurrency
and Computation: Practice and Experience, 18:1039–1065, 2006.

Mierswa, I., M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping
for complex data mining tasks. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD-06), 2006.

Nadeau, C. and Y. Bengio. Inference for the generalization error. Machine Learning, 52
(3):239–281, 2003.

Tomasi, G., F. van den Berg, and C. Andersson. Correlation optimized warping and
dynamic time warping as preprocessing methods for chromatographic data. Journal of
Chemometrics, 18(5):231–241, 2004.

WikiPedia. Gas chromatography-mass spectrometry — Wikipedia, the free encyclopedia,
2012. [Online; accessed 23-Feb-2012].


